首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of perennial grasses to affect change in soil properties is well documented but information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. An on‐farm study (10 fields) in North Dakota, South Dakota, and Nebraska was sampled before switchgrass establishment and after 5 years to determine changes in soil bulk density (SBD), pH, soil phosphorus (P), and equivalent mass soil organic carbon (SOC). Changes in SBD were largely constrained to near‐surface depths (0–0.05 m). SBD increased (0–0.05 m) at the Nebraska locations (mean=0.16 Mg m?3), while most South Dakota and North Dakota locations showed declines in SBD (mean=?0.18 Mg m?3; range=?0.42–0.07 Mg m?3). Soil pH change was significant at five of the 10 locations at near surface depths (0–0.05 m), but absolute changes were modest (range=?0.67–0.44 pH units). Available P declined at all sites where it was measured (North Dakota and South Dakota locations). When summed across the surface 0.3 m depth, annual decreases in available P averaged 1.5 kg P ha?1 yr?1 (range=0.5–2.8 kg P ha?1 yr?1). Averaged across locations, equivalent mass SOC increased by 0.5 and 2.4 Mg C ha?1 yr?1 for the 2500 and 10 000 Mg ha?1 soil masses, respectively. Results from this study underscore the contribution of switchgrass to affect soil property changes, though considerable variation in soil properties exists within and across locations.  相似文献   

2.
1. Microbial plankton dynamics in an ultra‐oligotrophic epishelf lake (Beaver Lake, Antarctica) were investigated over an austral summer (December 2002 to January 2003). The aim was to characterise carbon cycling in an environmentally extreme lake. 2. The lake had an unusual temperature profile with peak temperatures of 1.3–1.9 °C between 20 and 25 m. Photosynthetically active radiation penetrated to the lake bottom (110 m) on occasions. The ice cover underwent marked thinning and melting during the study period. 3. Chlorophyll a concentrations were consistently low, usually below 1 μg L?1, with highest concentrations close to the lake bottom, where the photosynthetic elements showed strong autofluorescence. Mean photosynthetic nanoflagellates ranged between 34.9 × 104 L?1 ± 33.5 (23rd December) and 130.9 × 104 L?1 ± 112.3 (4th December). Highest photosynthetic activity was usually recorded below 25 m. Rates of carbon fixation varied between 0.089 μg C L?1 h?1 ± 0.002 and 0.579 μg C L?1 h?1 ± 0.156. Primary production was limited by low temperature and orthophosphate availability. 4. Mean bacterial concentration throughout the water column ranged between 9.3 × 107 L?1 ± 1.2 (23rd December) and 14.0 × 107 L?1 ± 1.8 (28th January). Bacterial production was low, less than 10% of primary production and ranged between 2.1 ng C L?1 h?1 ± 0.8 and 12 ng C L?1 h?1 ± 0.9. Highest rates coincided with times of highest primary production. On occasion dissolved organic carbon (DOC) concentrations dropped to 20 μg L?1, probably below accurate limits of detection, suggesting that carbon substratum and phosphorus may have limited bacterial growth. 5. Heterotrophic nanoflagellates varied significantly over the summer from a mean of 26.6 × 104 L?1 ± 14.2 (23rd December) to 133.8 × 104 L?1 ± 33.5 (14th December). They imposed a significant grazing impact on the bacterioplankton, removing in excess of 100% of bacterial production in December. 6. The total organic carbon pool [DOC and particulate organic carbon (POC)] was below 600 μg L?1. The ratio of DOC : POC ranged between 0.44 : 1 and 2.8 : 1 in the upper 40 m of the water column, and 1.8 : 1 and 3.7 : 1 in the lower waters. The microbial plankton contributed 1–29% of POC, thus detrital POC made up the largest fraction of the POC pool. 7. Beaver Lake is an extreme lacustrine ecosystem where heterotrophic processes occasionally appear to be carbon limited. Significant summer ice‐melt, not seen in a previous opportunistic sampling, may be having an impact on the carbon cycle.  相似文献   

3.
Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (?4 ± 35 kg ha?1) and K (?6 ± 36 kg ha?1) and a moderate surplus of P (37 ± 21 kg ha?1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha?1 yr?1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha?1 yr?1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha?1 yr?1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.  相似文献   

4.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

5.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

6.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

7.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

8.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC.  相似文献   

9.
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools.  相似文献   

10.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

11.
A model was developed to calculate carbon fluxes from agricultural soils. The model includes the effects of crop (species, yield and rotation), climate (temperature, rainfall and evapotranspiration) and soil (carbon content and water retention capacity) on the carbon budget of agricultural land. The changes in quality of crop residues and organic material as a result of changes in CO2 concentration and changed management were not considered in this model. The model was parameterized for several arable crops and grassland. Data from agricultural, meteorological, soil, and land use databases were input to the model, and the model was used to evaluate the effects of different carbon dioxide mitigation measures on soil organic carbon in agricultural areas in Europe. Average carbon fluxes under the business as usual scenario in the 2008–2012 commitment period were estimated at 0.52 tC ha?1 y?1 in grassland and ?0.84 tC ha?1 y?1 in arable land. Conversion of arable land to grassland yielded a flux of 1.44 tC ha?1 y?1. Farm management related activities aiming at carbon sequestration ranged from 0.15 tC ha?1 y?1 for the incorporating of straw to 1.50 tC ha?1 y?1 for the application of farmyard manure. Reduced tillage yields a positive flux of 0.25 tC ha?1 y?1. The indirect effect associated with climate was an order of magnitude lower. A temperature rise of 1 °C resulted in a ?0.05 tC ha?1 y?1 change whereas the rising CO2 concentrations gave a 0.01 tC ha?1 y?1 change. Estimates are rendered on a 0.5 × 0.5° grid for the commitment period 2008–2012. The study reveals considerable regional differences in the effectiveness of carbon dioxide abatement measures, resulting from the interaction between crop, soil and climate. Besides, there are substantial differences between the spatial patterns of carbon fluxes that result from different measures.  相似文献   

12.
Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42–0.65 GtC yr?1. In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha?1) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha?1) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between ?1.27 ± 0.37 and ?5.31 ± 2.08 tC ha?1 yr?1 while the nearby native forest stored ?3.31 ± 0.44 tC ha?1 yr?1. This carbon is mainly sequestered in the humus of deep soil layers (20–100 cm), whereas no C storage was observed in the 0‐ to 20‐cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests.  相似文献   

13.
Biometric based carbon flux measurements were conducted over 5 years (1999–2003) in a temperate deciduous broad-leaved forest of the AsiaFlux network to estimate net ecosystem production (NEP). Biometric based NEP, as measured by the balance between net primary production (including NPP of canopy trees and of forest floor dwarf bamboo) and heterotrophic respiration (RH), clarified the contribution of various biological processes to the ecosystem carbon budget, and also showed where and how the forest is storing C. The mean NPP of the trees was 5.4 ± 1.07 t C ha−1 y−1, including biomass increment (0.3 ± 0.82 t C ha−1 y−1), tree mortality (1.0 ± 0.61 t C ha−1 y−1), aboveground detritus production (2.3 ± 0.39 t C ha−1 y−1) and belowground fine root production (1.8 ± 0.31 t C ha−1 y−1). Annual biomass increment was rather small because of high tree mortality during the 5 years. Total NPP at the site was 6.5 ± 1.07 t C ha−1 y−1, including the NPP of the forest floor community (1.1 ± 0.06 t C ha−1 y−1). The soil surface CO2 efflux (RS) was averaged across the 5 years of record using open-flow chambers. The mean estimated annual RS amounted to 7.1 ± 0.44 t C ha−1, and the decomposition of soil organic matter (SOM) was estimated at 3.9 ± 0.24 t C ha−1. RH was estimated at 4.4 ± 0.32 t C ha−1 y−1, which included decomposition of coarse woody debris. Biometric NEP in the forest was estimated at 2.1 ± 1.15 t C ha−1 y−1, which agreed well with the eddy-covariance based net ecosystem exchange (NEE). The contribution of woody increment (Δbiomass + mortality) of the canopy trees to NEP was rather small, and thus the SOM pool played an important role in carbon storage in the temperate forest. These results suggested that the dense forest floor of dwarf bamboo might have a critical role in soil carbon sequestration in temperate East Asian deciduous forests.  相似文献   

14.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

15.
The collapse of collective farming in Russia after 1990 and the subsequent economic crisis led to the abandonment of more than 45 million ha of arable lands (23% of the agricultural area). This was the most widespread and abrupt land use change in the 20th century in the northern hemisphere. The withdrawal of land area from cultivation led to several benefits including carbon (C) sequestration. Here, we provide a geographically complete and spatially detailed analysis of C sequestered in these abandoned lands. The average C accumulation rate in the upper 20 cm of mineral soil was 0.96 ± 0.08 Mg C ha?1 yr?1 for the first 20 years after abandonment and 0.19 ± 0.10 Mg C ha?1 yr?1 during the next 30 years of postagrogenic evolution and natural vegetation establishment. The amount of C sequestered over the period 1990–2009 accounts to 42.6 ± 3.8 Tg C per year. This C sequestration rate is equivalent to ca. 10% of the annual C sink in all Russian forests. Furthermore, it compensates all fire and postfire CO2 emissions in Russia and covers about 4% of the global CO2 release due to deforestation and other land use changes. Our assessment shows a significant mitigation of increasing atmospheric CO2 by prolonged C accumulation in Russian soils caused by collective farming collapse.  相似文献   

16.
The employment of biochar in crop production can not only improve soil quality, but also helps the field ecosystem to fix carbon and reduce emissions. Although the benefits of their application in crop production have been more and more confirmed, it is not clear when it comes to the acidic soil of tobacco and rice rotation. A tobacco–rice rotation experiment was conducted in southern China to probe the application value of biochar under these conditions. Three biochar application rates were employed in this experiment. BC0 (without biochar), BC25 (25 t ha−1), and BC50 (50 t ha−1). The findings show that biochar significantly boosted soil fertility and crop yields. Meanwhile, the soil organic carbon of tobacco rice rotation field with biochar increased by 31.76%. After a whole growth period of tobacco and rice, the cumulative emission reduction of CO2 and N2O from the soil by biochar were 15,944 kg ha−1 and 1810 g ha−1, respectively. The use of biochar not only significantly improved the bacterial diversity of tobacco and rice rotation soil, but also altered the original microbial community structure. The profusion of Proteobacteria and Acidobacteria was reduced and the abundance of Actinobacteria and Bacteroidetes was enhanced in the treatments with biochar. Among them, Sphingomonadales, Planctomycotes, and Ktedonobacteria, which are beneficial to plant growth and soil health, have become key phylotypes. The carbon balance analysis data show that the net carbon sequestration of the two treatments with biochar is positive, while that of the treatment without biochar is negative. In terms of economic benefit, the application of biochar increased the average of 2.055 CNY kg−1 consumed energy (CE) in the whole tobacco–rice rotation system. The ecological benefit was 0.51 kg C kg−1 CE. In conclusion, biochar can be effectively used in the practice of tobacco–rice rotation and acidic soil improvement in southern China.  相似文献   

17.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

18.
Past studies have shown that dissolved organic carbon (DOC) washing can effectively remove heavy metals from contaminated soil. In this study, we used alkaline DOC solutions for remediation of arsenic (As)-contaminated soil (with an initial As concentration in the topsoil of 390 mg kg?1). The removal of As and the change in soil nutrients during DOC washing were studied for 60 min at pH 10 with a 60:1 liquid/soil ratio (v/m). Approximately 88% of As was removed by washing the soil twice using a 3000 mg L?1 DOC solution at 25°C. Following this treatment, the pH of the soil had increased from 5.6 to 9.2; organic carbon content had increased from 3.5% to 4.1%; cation exchange capacity, ammonium-N, and available phosphorus had increased to 2.3, 1.4, and 6.6 times their original levels, respectively; and exchangeable K, Na, Ca, and Mg had increased to 91, 6.1, 4.2, and 2.2 times their original levels, respectively. A sequential extraction investigation revealed that residual As and easily exchangeable As in the fraction were initially 10.2% and 9.2%, respectively, but that the former became the maximum remainder (64%) after the ultimate DOC washing.  相似文献   

19.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

20.
Historically, large areas of forest in Europe were managed as coppice woodland to produce wood‐based fuel for the smelting industry. We hypothesized that this practice produced a legacy effect on current forest ecosystem properties. Specifically, we hypothesized that the historical form of coppicing may have produced a legacy of elevated stocks of soil organic carbon (SOC), nutrients and black carbon (BC) in soil as fire was routinely used in coppiced woodland to clear land. We further hypothesized that these changes in soil properties would result in increased biodiversity. To test these hypotheses, we sampled the surface soil (0–5, 5–10 and 10–20 cm) from a chronosequence of forest sites found in the Siegerland (Germany) that had been coppiced and burned 1, 2, 3.5, 6, 8, 11 and 17 years before present. Mature beech and spruce forests (i.e., >60 years) were also sampled as reference sites: to provide a hint of what might occur in the absence of human intervention. We measured stocks of SOC, BC, NO3‐N, P, K, Mg, as well as cation exchange and water‐holding capacity, and we mapped plant composition to calculate species richness and evenness. The results showed that coppicing in combination with burning soil and litter improved soil nutrient availability, enhanced biodiversity and increased SOC stocks. The SOC stocks and biodiversity were increased by a factor of three relative to those in the mature beech and spruce forests. This study shows that traditional coppicing practice may facilitate net C accrual rates of 20 t ha?1 yr?1 and maintain high biodiversity, indicating that aspects of traditional practice could be applied in current forest management to foster biodiversity and to mitigate climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号