首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Chemotactic behavior of Chlamydomonas reinhardtii is altered during the sexual life cycle. Unlike vegetative cells and noncompetent pregametes, mature gametes did not show chemotaxis to ammonium. Loss of chemotaxis to ammonium in mating-competent cells is controlled by gamete-specific genes that are common for both mating-type gametes. Change of chemotaxis mode requires the sequential action of the two environmental signals: removal of ammonium from the medium and light. The mutants lrg1, lrg3, and lrg4 affected in the light-dependent step of sexual differentiation exhibited the loss of chemotaxis to ammonium in the absence of light. These data indicate that there are common components in the signaling pathways that control change of chemotactic behavior and forming of mating competence in gametes. Received: 14 May 2002 / Accepted: 21 June 2002  相似文献   

2.
Summary An active transport system specific for ammonium and methylammonium is decribed in wild type cells of Aspergillus nidulans. This system has a Km of less than 5x10-5 M for ammonium as measured by the uptake of 15NH+ 4 and a Km of 2x10-5 M and apparent Vmax of 11 nanomoles/min/mg dry weight for methylammonium, by the uptake of 14C methylammonium. The system concentrates methylammonium at least 120-fold and is probably regulated by the concentration of internal ammonium.Cells of the mutant strain DER-3 possess a reduced rate of ammonium and methylammonium transport under all conditions tested. DER-3 is a double mutant, one mutation being allelic with meaA8 and designated meaA21, the other is unlinked to meaA and designated mod meaA. The heterozygous diploid DER3/+ has wild type transport, indicating that the mutations are recessive. Cells of the mutant strain amrA1 have impaired transport of ammonium and methylammonium, but only under some conditions. amrA1 is recessive. The possible defects of these mutants are discussed.  相似文献   

3.
Chemotactic behavior of Chlamydomonas reinhardtii is altered during the sexual life cycle. Unlike vegetative cells and noncompetent pregametes, mature gametes did not show chemotaxis to ammonium. Loss of chemotaxis to ammonium in mating-competent cells is controlled by gamete-specific genes that are common for both mating-type gametes. Change of chemotaxis mode requires the sequential action of the two environmental signals: removal of ammonium from the medium and light. The mutants lrg1, lrg3, and lrg4 affected in the light-dependent step of sexual differentiation exhibited the loss of chemotaxis to ammonium in the absence of light. These data indicate that there are common components in the signaling pathways that control change of chemotactic behavior and forming of mating competence in gametes.  相似文献   

4.
5.
Patterns of reproduction were investigated in some microalgal species of Chlorophyceae (Botryosphaerella sudetica, Neochloris aquatica, Neochloris vigensis, Bracteacoccus minor). Under continuous light, the microalgae reproduced asexually producing autospores. However, appropriate manipulation of external conditions led to a change in the reproduction pattern towards production of zoospores or gametes. Production of zoospores and gametes was inhibited by light; motile cells emerged when microalgae were cultivated in darkness. The period of dark treatment necessary for zoosporogenesis or gametogenesis differed substantially among species that were tested. Sexual reproduction was observed in Neochloris vigensis and Bracteacoccus minor, whose generative life cycle had not been previously reported. The morphology of motile cells, the mode of sexual reproduction, and the efficiency of both the production of motile stages and mating events, were investigated. In order to gain detailed insights into patterns of reproduction, Botryosphaerella sudetica was selected for investigation under different light treatments. Non-actinic red light applied in the early phase of dark cultivation (up to 2 h) suppressed both zoosporogenesis and gametogenesis. However, after a 3-h dark pre-treatment, red light treatment had no effect on zoosporogenesis or gametogenesis. In contrast, non-actinic blue light did not block zoosporogenesis or gametogenesis, regardless of the time of treatment. The possible role of a red-light photoreceptor in zoosporogenesis and gametogenesis is discussed.  相似文献   

6.
To find out glycoproteins involved in the mating reaction ofChlamydomonas reinhardtii, the effect of tunicamycin (TM), a potent inhibitor of glycosylation of proteins, was studied. TM, when present during gametogenesis, blocked the acquisition of agglutinability ofmt + cells. TM also inhibited the recovery of agglutinability ofmt + gamete after trypsin treatment. On the contrary, TM blocked neither the acquisition of agglutination during gametogenesis ofmt - cells nor the recovery of their agglutinability after trypsinization. It was found, however, that the TM-treatedmt - gametes can agglutinate but do not fuse with non treatedmt + gametes at all. When gametes of gam-1mt -, a conditional mutant strain for cell fusion, were induced at non permissive temperature of 35°C and then transferred to 25°C, the ability of cell fusion was acquired after about 5 h incubation. Presence of TM completely blocked this acquisition. Based on these evidence, we conclude that at least two TM-sensitive glycoproteins are included in the mating reaction. The first component is located on the flagellar surface ofmt + gamete and responsible for agglutination withmt - flagella. The second component occurs on the surface ofmt - gamete and plays a role in the fusion withmt + gamete.Abbreviations CHI cycloheximide - mt mating type - TM tunicamycin  相似文献   

7.
Gametogenesis in male and female gametophytes was studied by light microscopy and EM in the dioecious multinucleate green alga Derbesia tenuissima (Moris & De Notaris) P. Crouan & H. Crouan, where male and female gametes differ in size. Gametogenesis was divided into five stages: 32 h (stage 1), 24 h (stage 2), 16 h (stage 3), 8 h (stage 4), and 0.5 h (stage 5) before gamete release. At stage 1, the first sign of gametogenesis observed was the aggregation of gametophyte protoplasm to form putative gametangia. At stage 2, gametangia were separated from the vegetative protoplasm of gametophytes. Morphological changes of nuclei and organelles occurred at this early stage of male gametogenesis, and organelle DNA degenerated. At stage 3, male organelle DNA had completely degenerated, whereas in female gametangia, organelle DNA continued to exist in both chloroplasts and mitochondria. Gametogenesis was almost completed at stage 4 and fully at stage 5. Small male gametes had a DNA‐containing nucleus and a large mitochondrion and one or several degenerated chloroplasts. The mitochondria and plastids were devoid of DNA. The large female gametes had a nucleus and multiple organelles, all of which contained their own DNA. Thus, degeneration of chloroplast DNA along with morphological changes of organelles occurred at male gametogenesis in anisogamous green algae (Bryopsis and D. tenuissima), in contrast with previous studies in isogamous green algae (Chlamydomonas, Acetabularia caliculus, and Dictyosphaeria cavernosa) in which degeneration of chloroplast DNA occurred after zygote formation.  相似文献   

8.
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES 2-(N-Cyclohexylamino)ethanesulphonic acid - MOPS 3(N-morpholine)propanesulphonic acid  相似文献   

9.
Gametophytes of Ulva mutabilis Føyn and Ulva lactuca L. were artificially induced to form gametangia by removal of sporulation inhibitors. After this treatment, U. mutabilis gametes were ready for swarming on the third morning after induction, while U. lactuca gametangia needed 1–2 d longer for maturation. Release of gametes of U. lactuca was dependent solely upon exposure to the first light in the morning. Gametangia of U. mutabilis, however, also required sufficient dilution of the swarming inhibitor (SWI). SWI was excreted transiently by both Ulva species early during gametogenesis. While the SWI concentration in U. mutabilis medium remained above the inhibitory concentration until the gametangia were mature, the concentration of U. lactuca‐SWI dropped rapidly below this level. In the presence of sufficient SWI, mature gametes of U. mutabilis remained motionless within the gametangia despite light and open exit pores. However, using SEM, an additional seal was detected within these pores, which probably prevented premature swarming until dilution of SWI and exposure to light. Observations by time lapse microscopy and experiments with the myosin kinase inhibitor BDM suggest that the gametes may be either extruded by the gametangium or leave the exit pore by active gliding motion, driven by a myosin‐like motor protein. The SWIs were purified from both Ulva species, and mass spectral analysis showed their molecular masses (292 Da) were identical.  相似文献   

10.
A new methylammonium-resistant mutant strain from Chlamydomonas reinhardtii, henceforth termed 2172 (ma-2), has been isolated. This mutant is affected in a single mendelian gene different from and linked to the ma-1 locus which is defective in the methylammonium-resistant mutant 2170. Both mutations in ma-1 (2170) and ma-2 (2172) are linked to the nit-1 gene coding for the nitrate reductase apoenzyme. Mutant 2172 is affected in methylammonium but not in ammonium uptake capacity and shows derepressed nitrate and nitrite reductase activities in media containing nitrate plus methylammonium but not in nitrate plus ammonium media. The following two enzymatic components for the transport of both ammonium and methylammonium in wild-type cells have been identified: component 1, with high Vmax and K values, which is constitutive, and component 2, with low Vmax and K values, which is ammonium-repressible. Mutant 2170 lacks component 1 whereas mutant 2172 lacks component 2 for both methylammonium and ammonium transport. From genetic and kinetic evidences we conclude that in C. reinhardtii two different carriers are responsible for the transport of both ammonium and methylammonium and that methylammonium (ammonium) transport is a reversible process probably inhibited by the intracellular ammonium which, in turn, regulates nitrate and nitrite reductase levels.  相似文献   

11.
G. Gloeckner  C. F. Beck 《Genetics》1995,141(3):937-943
Gamete formation requires the sequential action of two extrinsic cues, nitrogen deprivation and blue light. The mutants described here are specifically altered in the light-dependent step. Mutations lrg1, lrg3, and lrg4 overcome this light dependence while mutation lrg2 results in a delayed execution of the light-mediated step. The four mutations are linked. The recessive nature of the lrg1, lrg3, and lrg4 mutations implies that they encode elements of negative control in this light response pathway. Analyses of diploids suggest an interaction between the gene products of the mutated loci with a central role for lrg4. The lrg4 mutation is unique also because it overcomes the light dependence of Chlamydomonas zygote germination when present in homozygous form. These data indicate that there are common components in the signal chains that control gametogenesis and zygote germination.  相似文献   

12.
The supply of iron has been reported to affect gametogenesis in the gametophytes of some species of kelps (order Laminariales). Spores of the kelps Alaria marginata Postels & Ruprecht, Dictyoneurum californicum Ruprecht, Egregia menziesii (Turner) Areschoug, Laminaria setchellii Silva, and Macrocystis pyrifera (L.) C. Agardh were cultured in enriched seawater with and without added chelated iron (Fe‐ethylenediaminetetraacetate) to determine the effects of iron on oogenesis. All species showed a decrease in oogenesis without added Fe‐ethylenediaminetetraacetic acid (EDTA). Gametophytes of E. menziesii showed predominant gametogenesis with or without supplied iron, resulting in all cells being converted to gametes so that vegetative growth did not continue. Vegetative gametophytes were obtained in the other species used. Gametophytes of M. pyrifera did not show any oogenesis without added Fe‐EDTA, while those of L. setchellii, A. marginata and D. californicum were intermediate in their response, showing some gametogenesis without added Fe‐EDTA. When Fe‐EDTA supply was delayed by 6, 13 and 20 days with spores of M. pyrifera, the gametophytes produced fewer eggs, with a greater decrease as the delay grew longer. A range of Fe‐EDTA concentrations was investigated using isolated female gametophytes of two strains of M. pyrifera and one of Macrocystis integrifolia Bory. None of these three strains produced gametes without the addition of Fe‐EDTA. Gametophytes of M. integrifolia required the least amount of added Fe‐EDTA to achieve gametogenesis while gametophytes of M. pyrifera required higher amounts, with the two strains showing somewhat different responses. Iron nutrition appears to be an essential factor for gametogenesis in several species of kelps.  相似文献   

13.
Female gametogenesis was studied in the dioecious siphonous green alga Codium fragile subsp. novae‐zelandiae (J. Agardh) P. C. Silva using light and electron microscopy. Early during gametogenesis the protoplasm was uniform; then it separated in portions, while fusiform chloroplasts and nuclei increased in numbers. Some features of the nuclear divisions were similar to those of other Bryopsidophyceae. They were acentric and semi‐open. Pairs of parallel electron‐dense lines resembling synaptonemic complexes were observed in several prophase nuclei indicating meioses. In metaphase the nuclear envelope showed polar fenestrae from which the spindle emerged. No spindle microtubule nucleating material was visible and chromosome kinetochores were evident. Mature female gametes were pyriform with a hyaline anterior end from which the two flagella emerged. Mature gametes had a spherical nucleus surrounded by a mitochondrion and numerous discoid chloroplasts. Female gametes germinated parthenogenetically in culture and also inside gametangia, involving loss of flagella, rounding and lengthening of cells, multiplication of chloroplasts with well developed thylakoid systems, vacuolization and synthesis of a fibrillar cell wall.  相似文献   

14.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

15.
16.
Chlamydomonas reinhardtii expresses a well-documented circadian rhythm of phototaxis, which peaks in the subjective daytime. We find that vegetative cells also express circadian rhythms of chemotaxis to ammonium and ammonium uptake (as gauged by uptake of [14C]methylammonium). The chemotaxis rhythm peaks in the subjective night. Methylammonium uptake is light dependent, and its rhythm peaks at subjective dawn. Unlike vegetative cells, gametes are not attracted to ammonium. We believe this to be the first report of a circadian rhythm of chemotaxis.  相似文献   

17.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

18.
Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin‐like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore‐forming toxin, we conclude that rupture of the erythrocyte membraneis blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin‐like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress.  相似文献   

19.
The effects of nutrients, temperature and light on gametogenesis in Scenedesmus obliquus (Turp.) Kütz, were studied in culture. Concentrations of nitrogen in the medium employed showed a marked influence on gamete production. Gametogenesis is inhibited by N excess but is not a response to N starvation or depletion. A drop in N level from that of the growth medium is not required, nor does it per se trigger gametogenesis. The N concentration satisfying growth requirements insufficiently low to permit sexual differentiation. Nitrogen level in the growth medium has no effect on subsequent N to maintain a typical culture. Number of gametes present at maximum production time is inversely related to N concentration, but neither time of onset of gametogenesis, nor time of maximum gamete production is affected by N concentration. Cultures incubated at 15 C in medium lacking N take a minimum of 20—24 h to develop cells irreversibly committed to gamete formation. At the concentrations tested, no medium component other than the N-containing salt affected gametogenesis. Temperature influences both time of maximum production and numbers present at maximum production time. Time of maximum production is inversely related to incubation temperature; a 15 C incubation temperature yielded highest gamete production. Light enhances gametogenesis but gamete formation can occur in absence of light. Achievement of a light-saturated response is dependent upon illumination given at two critical periods: one occurs shortly after N withdrawal; the other occurs later, when cells are becoming irreversibly committed to gamete formation. Ability to produce gametes diminished with prolonged laboratory culture.  相似文献   

20.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号