首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
The idea that bacteria are social is a popular concept with implications for understanding the ecology and evolution of microbes. The view arises predominately from reasoning regarding extracellular products, which, it has been argued, can be considered “public goods.” Among the best studied is pyoverdin—a diffusible iron‐chelating agent produced by bacteria of the genus Pseudomonas. Here we report the de novo evolution of pyoverdin nonproducing mutants, genetically characterize these types and then test the appropriateness of the sociobiology framework by performing growth and fitness assays in the same environment in which the nonproducing mutants evolved. Our data draw attention to discordance in the fit between social evolution theory and biological reality. We show that pyoverdin‐defective genotypes can gain advantage by avoiding the cost of production under conditions where the molecule is not required; in some environments pyoverdin is personalized. By exploring the fitness consequences of nonproducing types under a range of conditions, we show complex genotype‐by‐environment interactions with outcomes that range from social to asocial. Together these findings give reason to question the generality of the conclusion that pyoverdin is a social trait.  相似文献   

3.
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria – the production of an iron‐scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin‐producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron‐rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.  相似文献   

4.
Fur mutants FPA12 and FF13 of strains Pseudomonas aeruginosa PAO1 and Fe10, respectively, were prepared and their production of pyoverdin evaluated. The strains were cultivated in stirred bioreactor in iron-deficient and iron-supplemented medium containing Casamino acids (CA) or succinate as a source of carbon and energy. When the pyoverdin production rate reached its maximum, the demand of iron-depleted cultures for O2 was decreased. Mutant FF13 overproduced pyoverdin in both iron-depleted (862 mg l–1) and iron-supplemented (428 mg l–1) CA medium and could also be used to produce pyoverdin when grown in a conventional stirred tank fermenter.  相似文献   

5.
Alain Picaud 《BBA》1972,275(3):414-426
Relationship of structure, composition and Triton X-100 fractionation of chloroplas lamellae in wild type and two non-photosynthetic mutant strains of Chlamydomonas reinhardti

In order to provide information on the link between the two photosystems studies on the mode of action of Triton X-100 has been carried out on mutants, strains ac 21, Fl 15 and wild type of Chlamydomonas reinhardti. Experiments show that the release of Photosystem I particles from mutant chloroplast fragments needs less Triton X-100 than wild type does and that, compared to wild type, the chloroplast fragments of mutants appear to be deficient in carotenoids (ac 21) or in lipids (Fl 15). It is possible, therefore, to correlate the easier splitting of the mutant membrane by detergent with a decrease in the amount of these compounds (carotenoids and lipids) in mutant strains.

The following interpretation is proposed: (a) some of the carotenoids could be part of the hydrophobic sites on Photosystem I subchloroplast particles; (b) some polar lipids could be linked to these sites; (c) Triton X-100 could, in a competitive way, replace the membrane lipids linked to the hydrophobic sites of subchloroplast particles. It seems probable that anomalies in the mutant behaviour in regard to the Triton X-100 action are related to membrane structural defects in these mutants.  相似文献   


6.
7.
The plant growth-promoting rhizobacterium Pseudomonas aeruginosa 7NSK2 produces three siderophores when iron is limited: the yellow-green fluorescent pyoverdin, the salicylate derivative pyochelin, and salicylic acid. This Pseudomonas strain was shown to be an efficient antagonist of Pythium-induced damping-off. The role of pyoverdin and pyochelin in the suppression of Pythium splendens was investigated by using various siderophore-deficient mutants derived from P. aeruginosa 7NSK2 in a bioassay with tomato (Lycopersicon esculentum). To provide more insight into the role of pyochelin in antagonism, mutant KMPCH, deficient in the production of pyoverdin and pyochelin, was complemented for pyochelin production. The complementing clone was further characterized by subcloning and transposon mutagenesis and used to generate a pyochelin-negative, pyoverdin-positive mutant by marker exchange. All mutants were able to reduce Pythium-induced preemergence damping-off to some extent. Production of either pyoverdin or pyochelin proved to be necessary to achieve wild-type levels of protection against Pythium-induced postemergence damping-off. Mutant KMPCH inhibited P. splendens but was less active than the parental strain. This residual protection could be due to the production of salicylic acid. Since pyoverdin and pyochelin are both siderophores, siderophore-mediated iron competition could explain the observed antagonism and the apparent interchangeability of the two compounds. We cannot, however, exclude the possibility that both siderophores act in an indirect way.  相似文献   

8.
Aims: Listeria monocytogenesΔgadD1 and ΔlisK mutants display enhanced and reduced sensitivity, respectively, to the food preservative nisin in laboratory media. However, the behaviour of these strains in a nisin‐containing food has not been assessed. Here we use cottage cheese as a model food to address this issue. Materials and Results: Antibiotic‐resistant forms of the wild‐type and mutant strains were employed to investigate the behaviour of multiple strains in a single food sample, thereby eliminating the problem of intersample variation. Using this approach, it was established that percentage survival of the ΔlisK mutant was greater than the parent strain in the absence of nisin and that this relative difference became even more dramatic in cottage cheese supplemented with nisin. The numbers of the ΔgadD1 mutant decreased more rapidly than the parent in cottage cheese without nisin, but surprisingly this trend was reversed in nisin‐supplemented cheese. Upon the addition of 10 mmol l?1 monosodium glutamate, a substrate for the glutamate decarboxylase (GAD) system, the wild‐type LO28 strain regained its relative advantage over ΔgadD1. Conclusions: Care needs to be taken when predicting the behaviour of mutants of L. monocytogenes with altered resistance to nisin in food as experiments in laboratory media are not always a good indicator of how the strains will behave in such food environments. Significance and impact of the Study: This study further emphasizes the importance of utilizing food matrices to confirm observations made using laboratory media.  相似文献   

9.
The evolution of cooperation is thought to be promoted by pleiotropy, whereby cooperative traits are coregulated with traits that are important for personal fitness. However, this hypothesis faces a key challenge: what happens if mutation targets a cooperative trait specifically rather than the pleiotropic regulator? Here, we explore this question with the bacterium Pseudomonas aeruginosa, which cooperatively digests complex proteins using elastase. We empirically measure and theoretically model the fate of two mutants—one missing the whole regulatory circuit behind elastase production and the other with only the elastase gene mutated—relative to the wild‐type (WT). We first show that, when elastase is needed, neither of the mutants can grow if the WT is absent. And, consistent with previous findings, we show that regulatory gene mutants can grow faster than the WT when there are no pleiotropic costs. However, we find that mutants only lacking elastase production do not outcompete the WT, because the individual cooperative trait has a low cost. We argue that the intrinsic architecture of molecular networks makes pleiotropy an effective way to stabilize cooperative evolution. Although individual cooperative traits experience loss‐of‐function mutations, these mutations may result in weak benefits, and need not undermine the protection from pleiotropy.  相似文献   

10.
Chemical mutagens were used to obtain mutants deficient in bioluminescence in the marine bacterium Photobacterium fischeri strain MAV. Acridine dyes were effective in the production of dark mutants but not in the production of auxotrophs. These dark mutants were all of one type and appeared to contain lesions blocking the synthesis of luciferase. ICR-191 was especially effective in the production of aldehyde mutants, i.e., dark strains that luminesce when a long-chain aldehyde such as n-decanal is added to them. However, other mutant types were isolated after treatment with ICR-191. N-methyl-N'-nitro-N-nitrosoguanidine induced many bioluminescence-deficient types with respect to both the site of the lesion and the quantitative effect on the luminescent system. We characterized the dark and dim mutants with respect to their response to exogenous decanal, levels of in vivo and in vitro luminescence, and their rates of reversion to wild type. In addition, the luciferases of the mutant strains were examined by subunit complementation. On the basis of these analyses, we identified mutants which synthesize altered luciferase, strains which are deficient in synthesis of luciferase, and aldehyde mutants. The results of analysis of luciferase from the aldehyde mutants and the complementation studies indicate that the lesions in these strains are in the luciferase itself. Results obtained with wild-type cells grown in minimal medium, and aldehyde mutant cells grown either in complete or minimal medium, indicate that a "natural aldehyde factor" is involved in in vivo light emission. These same studies showed that the long-chain aldehyde(s) could only partially substitute for the natural "aldehyde factor." The possibility that the in vivo aldehyde factor is not a long-chain aldehyde is discussed.  相似文献   

11.
Aspergillus niger produces extracellular beta-fructofuranosidase under submerged (SmF) and solid state fermentation (SSF) conditions. After UV mutagenesis of conidiospores of A. niger, 2-deoxyglucose (10 g/l) resistant mutants were isolated on Czapek's minimal medium containing glycerol as a carbon source and the mutants were examined for improved production of beta-fructofuranosidase in SmF and SSF conditions. One of such mutant DGRA-1 overproduced beta-fructofuranosidase in both SmF and SSF conditions. In SmF, the mutant DGRA-1 showed higher beta-fructofuranosidase productivity (110.8 U/l/hr) than the wild type (48.3 U/l/hr). While in SSF the same strain produced 322 U/l/hr of beta-fructofuranosidase, 2 times higher than that of wild type (154.2 U/l/hr). In SmF, both wild type and mutants produced relatively low level of beta-fructofuranosidase in medium containing sucrose with glucose than from the sucrose medium. However in SSF, the DGRA-1 mutant grown in sucrose and sucrose+ glucose did not show any difference with respect to beta-fructofuranosidase production. These results indicate that the catabolite repression of beta-fructofuranosidase synthesis is observed in SmF whereas in SSF such regulation was not prominent.  相似文献   

12.
Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated onto and into plant leaves. For example, while none showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular spaces of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sites protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possibly several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes.  相似文献   

13.
P S Bagga  S Sharma  D K Sandhu 《Génome》1989,32(2):288-292
The production and electrophoretic expression of endoglucanase(s) were compared in the wild-type and three developmental mutants of Aspergillus nidulans. In the wild type, the production of endoglucanase and its distribution in extracellular and intracellular fractions varied with the age of the culture and the yield was better in stable cultures (production of conidia and cleistothecia) as compared with shake cultures (vegetative hyphae only). Two developmental mutants, aco-T69 and aco-40, which lack the development of conidia and cleistothecia, produced low levels of endoglucanase enzymes as compared with the wild type grown under similar conditions. On the other hand, in aco-90, a mutant capable of producing cleistothecia but no conidia, endoglucanase production was better. The results indicate a correlation between cleistothecial development and endoglucanase level. The electrophoretic studies revealed the presence of three forms of endoglucanase, i.e., EGI, EGII, and EGIII. The first two were detectable in the wild type as well as in mutant strains when grown under various experimental conditions and at all the stages of development. However, the third form could be observed only during cleistothecial development, indicating that this isozyme is developmentally regulated.  相似文献   

14.
Arabidopsis thaliana has two isoforms of alpha‐glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock‐out mutants do not show any clear growth phenotype, and we hypothesised that during low‐light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil‐grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild‐type plants. Furthermore, a standard senescence assay from soil‐grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild‐type leaves. We also found decreased hypocotyl extension in in vitro‐grown phs2 mutant seedlings when grown for long time in darkness at 6 °C. We conclude that PHS2 activity is important in the adult stage during low‐light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.  相似文献   

15.
Multiply peptidase-deficient mutant strains of Salmonella typhimurium fail to carry out normal protein degradation during starvation for a carbon source. In these mutants, the extent of protein breakdown during starvation is about fourfold less than in the wild type. The products of protein breakdown in the mutant are mainly small, trichloroacetic acid-soluble peptides, not free amino acids as in the wild type. The carbon-starved mutant strain produces only about one thirtieth as much free amino acid from protein as the wild type. As a result, protein synthesis during starvation is reduced in the mutant compared to the wild type and the mutant strain shows a greatly prolonged lag phase after a nutritional shift-down.  相似文献   

16.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

17.
Twelve mutants of Pseudomonas aeruginosa PAO defective in pyoverdin production were isolated (after chemical and transposon mutagenesis) that were nonfluorescent and unable to grow on medium containing 400 microM ethylenediaminedi(o-hydroxyphenylacetic acid). Four mutants were unable to produce hydroxamate, six were hydroxamate positive, one was temperature sensitive for pyoverdin production, and another was unable to synthesize pyoverdin on succinate minimal medium but was capable of synthesizing pyoverdin when grown on Casamino Acids medium (Difco Laboratories, Detroit, Mich.). The mutations were mapped on the PAO chromosome. All the mutations affecting pyoverdin production were located at 65 to 70 min, between catA1 and mtu-9002.  相似文献   

18.
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue‐cultured plantlets grown in vitro. Six mutants of strain XaFL07‐1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly‐β‐hydroxybutyrate than the wild‐type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non‐ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild‐type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.  相似文献   

19.
Resistance to antimicrobial and chemotherapeutic agents is a significant clinical problem. Overexpression of multidrug efflux pumps often creates broad‐spectrum resistance in cancers and pathogens. We describe a mutation, A666G, in the yeast ABC transporter Pdr5 that shows greater resistance to most of the tested compounds than does an isogenic wild‐type strain. This mutant exhibited enhanced resistance without increasing either the amount of protein in the plasma membrane or the ATPase activity. In fluorescence quenching transport assays with rhodamine 6G in purified plasma membrane vesicles, the initial rates of rhodamine 6G fluorescence quenching of both the wild type and mutant showed a strong dependence on the ATP concentration, but were about twice as high in the latter. Plots of the initial rate of fluorescence quenching versus ATP concentration exhibited strong cooperativity that was further enhanced in the A666G mutant. Resistance to imazalil sulfate was about 3–4x as great in the A666G mutant strain as in the wild type. When this transport substrate was used to inhibit the rhodamine 6G transport, the A666G mutant inhibition curves also showed greater cooperativity than the wild‐type strain. Our results suggest a novel and important mechanism: under selection, Pdr5 mutants can increase drug resistance by improving cooperative interactions between drug transport sites.  相似文献   

20.
Summary Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic‐Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic‐Fe(III) complexes to include Shewanella oneidensis MR‐1. Soluble organic‐Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O2, nitrate or trimethylamine‐N‐oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic‐Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)‐citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic‐Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild‐type and Sol mutant strains, and all four Sol mutants retained wild‐type siderophore production capability. Results of this study indicate that the production of soluble organic‐Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号