首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
AIMS: To investigate the microbial inactivation efficiency of a newly developed cascaded dielectric barrier discharge (CDBD) set-up against various micro-organisms on polyethylene terephthalate (PET) foils. METHODS AND RESULTS: Inactivation kinetics in dependency of time were produced with air as process gas and test strains like Salmonella serotype Mons, Staphylococcus aureus and Escherichia coli and spores of Bacillus atrophaeus, Aspergillus niger and Clostridium botulinum, which were homogeneously distributed on the sample surface by a spray method. Highest count reduction was observed for the vegetative cells with at least 6.6 log(10) within 1 s. Aspergillus niger was the most resistant test strain with an inactivation rate of about 5 log(10) in 5 s. CONCLUSIONS: For industrial applications it is necessary to evaluate new sterilization methods against a broad range of different micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY: CDBD plasma is a fast and effective technology for decontamination of heat sensitive materials in few seconds.  相似文献   

2.
Aims:  To investigate the effect of relative gas humidity on the inactivation efficiency of a cascaded dielectric barrier discharge (CDBD) in air against Aspergillus niger and Bacillus subtilis spores on PET foils.
Methods and Results:  The inactivation kinetics as a function of treatment time were determined using synthetic air with different relative humidity as the process gas. Spores of A. niger and B. subtilis respectively were evenly sprayed on PET foils for use as bioindicators. In the case of A. niger, increased spore mortality was found at a high relative gas humidity of 70% (approx. 2 log10). This effect was more evident at prolonged treatment times. In contrast, B. subtilis showed slightly poorer inactivation at high gas humidity.
Conclusions:  Water molecules in the process gas significantly affect the inactivation efficiency of CDBD in air.
Significance and Impact of the Study:  Modifying simple process parameters such as the relative gas humidity can be used to optimize plasma treatment to improve inactivation of resistant micro-organisms such as conidiospores of A. niger .  相似文献   

3.
4.
This study investigates the application of Plasma‐polymerized pyrrole (ppPY) as bioactive platform for DNA immobilization and cell adhesion based on the fundamental properties of ppPY, such as chemical structure, electrochemical property, and protein adsorption. Variations in electrochemical properties of the ppPY film deposited under different plasma conditions before and after DNA immobilization were measured using electrochemical impedance spectroscopy (EIS). The equilibrium concentration of the probe DNA immobilized on the ppPY surface was deduced by detecting the variations in the surface charge transfer resistance (Rct) of the ppPY films after DNA immobilization with different concentrations. In addition, the detection limit of the target DNA hybridization with probe DNA, the association constant, Ka, and the dissociation constant were deduced from Langmuir isotherm equations simulated using the experimental data collected by EIS. Moreover, inverted microscope was used to observe the cell adhesions onto the surface of the ppPY films prepared under different plasma conditions. Different adhesive behaviors of cells were observed, demonstrating that ppPY films could be an alternative biomaterial used as the sensitive layer for DNA sensor or cell adhesion. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 496–503, 2014.  相似文献   

5.
Aims: To identify structural components of Bacillus subtilis spores serving as targets for sterilization with microwave induced low‐pressure, low‐temperature nitrogen‐oxygen plasma. Methods and Results: The inactivation of spores followed a biphasic kinetics consisting of a log‐linear phase with rapid inactivation followed by a slow inactivation phase. In the course of plasma treatment, damage to DNA, proteins and spore membranes were observed by monitoring the occurrence of auxotrophic mutants, inactivation of catalase (KatX) activity and the leakage of dipicolinic acid, respectively. Spores of the wild‐type strain showed the highest resistance to plasma treatment. Spores of mutants defective in nucleotide excision repair (uvrA) and small acid‐soluble proteins (ΔsspA ΔsspB) were more sensitive than those defective in the coat protein CotE or spore photoproduct repair (splB). Exclusion of reactive particles and spectral fractions of UV radiation from access to the spores revealed that UV‐C radiation is the most effective inactivation agent in the plasma, whereby the splB and ΔcotE mutant spores were equally and slightly less sensitive, respectively, than the wild‐type spores. Finally, the extent of damages in the spore DNA determined by quantitative PCR correlated with the spore inactivation. Conclusions: Spore inactivation was efficiently mediated by a combination of DNA damage and protein inactivation. DNA was identified to be the primary target for spore inactivation by UV radiation emitted by the plasma. Coat proteins were found to constitute a protective layer against the action of the plasma. Significance and Impact of the Study: The results provide new evidence to the understanding of plasma sterilization processes. This knowledge supports the identification of useful parameters for novel plasma sterilization equipment to control process safety.  相似文献   

6.
The fabrication of Bacillus subtilis endospore imprinted conducting polymer films and subsequent electrochemical detection of bound spores is reported. Imprinted films were prepared by absorbing spores on the surface of glassy carbon electrodes upon which a polypyrrole, followed by a poly(3-methylthiophene), layer were electrochemically deposited. Spore template release was achieved through soaking the modified electrode in DMSO. Binding of endospores to imprinted films could be detected via impedance spectroscopy by monitoring changes in Y' (susceptance) using Mn(II)Cl2 (0.5M pH 3) as the supporting electrolyte. Here, the change in Y' could be correlated to spore densities between 10(4) and 10(7)cfu/ml. More sensitive detection of absorbed spores was achieved by following endospore germination via changes in film charge as measured using cyclic voltammetry. Here, imprinted films were submerged in spore suspensions to permit absorption, heat activated at 70 degrees C for 10 min prior to transferring to an electrochemical cell containing germination activators. By using the assay format it was possible to detect 10(2)cfu/ml. The observed changes in film charge could be attributed to the interaction of the supporting conducting polymer with dipicolinic acid (DPA) and other constituents released from the core in the course of germination. In all cases, it was not possible to regenerate the imprinted films without losing electrode response. In summary, the study has provided proof-of-concept for fabricating microbial imprinted films using conducting polymers.  相似文献   

7.
Zhang Z  Liang P  Zheng X  Peng D  Yan F  Zhao R  Feng CL 《Biomacromolecules》2008,9(6):1613-1617
The present work describes the fabrication and characterization of the conducting polymer coatings prepared by the continuous wave plasma polymerization and the applications as adhesion layers for studying DNA immobilization/hybridization. The stability of plasma polymerized pyrrole (ppPY) in the aqueous solution was characterized by ellipsometry. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to investigate polymer matrix properties and oligonucleotide/DNA binding interaction. The successful DNA immobilization on ppPY surfaces was found to depend on the macromolecular architecture of plasma polymerized films. The plasma polymers with similar thickness deposited at different input powers showed various comparable immobilization properties. The plasma-polymerized films prepared at the low input power showed a lower sensitivity toward DNA binding than those films deposited at the high input power. This result will be important to study plasma polymerized films as potential DNA biosensors in the future.  相似文献   

8.
The adsorption of BSA and fibrinogen onto plasma-polymerized di-(ethylene glycol) vinyl ether, allylamine, and maleic anhydride films were investigated in detail by surface plasmon resonance spectroscopy (SPR). The chemical properties of the plasma polymers were initially determined by the plasma deposition conditions during the generation procedure. The analysis of the chemical structure of the films and the refractive index of plasma polymers in aqueous solution was carried out using Fourier transform infrared spectroscopy and waveguide mode spectroscopy, respectively. Using water contact angle measurement, the surface wettability of plasma polymers was also characterized. These properties have a critical influence on the behavior of protein adsorption on the surface of the plasma polymers. Protein adsorption was found to depend not only on the types of functionalized groups, but also on the plasma polymer thickness since the protein molecules penetrate into the plasma polymer network bulk. According to the size of protein molecules in aqueous solution and the amount of adsorbed proteins observed by SPR, the conformational changes of proteins could be deduced.  相似文献   

9.
Polyelectrolyte multilayers (PEMs) fabricated from cationic polymers and DNA have been investigated broadly as materials for surface-mediated DNA delivery. One attractive aspect of this "multilayered" approach is the potential to exploit the presence of cationic polymer "layers" in these films to deliver DNA to cells more effectively. Past studies demonstrate that these films can promote transgene expression in vitro and in vivo, but significant questions remain regarding roles that the cationic polymers could play in promoting the internalization and processing of DNA. Here, we report physicochemical and in vitro cell-based characterization of DNA-containing PEMs fabricated using fluorescently end-labeled derivatives of a degradable polycation (polymer 1) used in past studies of surface-mediated transfection. This approach permitted simultaneous characterization of polymer and DNA in solution and in cells using fluorescence-based techniques, and provided information about the locations and behaviors of polymer 1 that could not be obtained using other methods. LSCM and flow cytometry experiments revealed that polymer 1 and DNA released from film-coated objects were both internalized extensively by cells and that they were colocalized to a significant extent inside cells (e.g., ~58% of DNA was colocalized with polymer). Fluorescence anisotropy measurements of solutions containing partially eroded films were also consistent with the presence of aggregates of polymer 1 and DNA in solution (e.g., after release from surfaces, but prior to internalization by cells). Our results support the view that polymer 1, which is incorporated into these materials as "layers" rather than as part of optimized, preformed "polyplexes", can act to promote or enhance surface-mediated DNA delivery. More broadly, our results suggest opportunities to improve the delivery properties of DNA-containing PEMs by incorporation of additional "layers" of other conventional cationic polymers designed to address specific intracellular barriers to transfection, such as endosomal escape, more effectively.  相似文献   

10.
The purpose of this research was to elucidate the significance of the changes in the mechanical and the volumetric properties on the moisture diffusivity through the polymer films. The internal stress concept was adapted and applied to estimate the relative impact of these property changes on the total stress experienced by a polymer film during storage. Hydroxypropyl Methylcellulose free films were used as a model material prepared at various conditions and stored at different relative humidities. The changes in the internal stress of these films due to the moisture sorption were studied. It was demonstrated that the stress-relaxation of the films increases at increasing moisture content. At the point when there is a definite loss of stress in the film, which is at moisture content higher than 6%, was shown to correlate with the significant increase of the moisture diffusivity. Further investigations revealed that the loss of stress is especially due to the swelling of the polymer rather than the changes in the inherent strain (the quotient between the tensile strength and the modulus of elasticity) of the HPMC films. This implies that the impact of the moisture sorption on the diffusivity is predominantly via volume addition rather than via altering the mechanical properties. Additionally, the approach presented here also brings up a new application of the internal stress concept, which in essence suggests the possibility to estimate the diffusion coefficient from the sorption isotherm and the mechanical analysis data.  相似文献   

11.
陶晴  卞晓军  张彤  刘刚  颜娟 《生物工程学报》2021,37(9):3162-3178
脱氧核糖核酸(Deoxyribonucleic acid,DNA)不仅可作为生物遗传的物质基础,又以其可编程性、功能多样性、生物相容性和生物可降解性等优点,在生物材料的构建方面表现出巨大的潜力。DNA水凝胶是一种主要由DNA参与形成的三维网状聚合物材料,同时因其保留的DNA生物性能与自身骨架的机械性能的完美融合使得它成为近年来最受关注的新兴功能高分子材料之一。目前,基于各种功能核酸序列或通过结合不同的功能材料制备的单组分或多组分DNA水凝胶,已广泛用于生物医学、分子检测及环境保护的研究或应用领域中。文中主要总结了近十几年来DNA水凝胶制备方法上的研究进展,探讨了DNA水凝胶的分类策略,并进一步综述了DNA水凝胶在药物运输、生物传感、细胞培养等方面的应用研究。最后对DNA水凝胶未来的发展方向以及可能面临的挑战进行了展望。  相似文献   

12.
The structure of DNA extracted from dormant and germinating spores of B. cereus T was investigated using circular dichroism and other methods. No significant differences between DNAs extracted from vegetative cells and from spores of various stages could be found by analyses of CD spectra, CsCl density gradient centrifugation, melting profiles and template activity. All the DNA preparations were in B conformation and had the same density (1.695), Tm (83°C) and template activity in the reaction of DNA-dependent RNA polymerase. An abnormal DNA fraction of high density which was formerly found in B. cereus spores or a stable DNA complex with protein and/or RNA was not detected in the present extracts of spores. Preliminary X-ray analyses of intact spores indicate that the structure of DNA in spores is not so different from B form.  相似文献   

13.
Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.  相似文献   

14.
A water-soluble polythiophene, POWT, with zwitterionic peptide like side chains possess good characteristics for biosensor applications. The zwitterionic side chains of the polymer can couple to biomolecules via electrostatic and hydrogen bonding. This creates possibilities to imprint biomolecules to spin-coated polymer films with maintained functionality, and use the resulting matrix as a biosensor. Polymer-biomolecular interaction studies done with surface plasmon resonance (SPR) reveal a well performing sensor matrix with high affinity for DNA hybridizations as well as for protein detection. The responses are distinct and very specific. A directional dependence of antibodies binding to POWT layer has also been observed. The polymer films have also been characterized by optical methods. Emission and absorption measurements in different buffer systems confirm that the polymer matrix can undergo structural and conformational changes on surfaces. The dielectric function in the interval 300-800 nm of POWT is reported, based on variable angle spectroscopic ellipsometry. This modeling reveals that a considerable amount of water is included in the material. The polymer layer possesses the characteristics needed for biochip applications and micro array techniques.  相似文献   

15.
Two distinct populations of Arnica montana, an endangered medicinal plant, were studied under field conditions. The material was investigated using microscopic and molecular methods. The analyzed plants were always found to be mycorrhizal. Nineteen arbuscular mycorrhizal fungal DNA sequences were obtained from the roots. They were related to Glomus Group A, but most did not match any known species. Some showed a degree of similarity to fungi colonizing liverworts. Conventional analysis of spores isolated from soil samples allowed to identify different fungal taxa: Glomus macrocarpum, Glomus mosseae, Acaulospora lacunosa, and Scutellospora dipurpurescens. Their spores were also isolated from trap cultures.  相似文献   

16.
The deoxyribonucleic acid (DNA) polymerases were partially purified from spores and vegetative cells of Bacillus subtilis. Some biochemical properties of the enzymes from the spores were studied in comparison with those from the vegetative cells. The spores and vegetative cells had at least three species of DNA polymerases (DNA polymerase I, II and III). These DNA polymerases in spores could not be distinguished from those in vegetative cells, respectively, with regard to the reresponses to ionic strength, the sensitivity to thiol-blocking agents, the template specificity, pH and temperature optima in assay, and the sedimentation behavior. It is inferred that DNA polymerases from spores was essentially identical to those from vegetative cells.

The DNA polymerase activity decreased rapidly in the course of sporulation, and only about 20% is recovered in the spores, suggesting that an extentive inactivation mechanism of the enzymes would be involved during sporulation.  相似文献   

17.
This review briefly outlines the history and possibilities of bone reconstruction using various types of artificial materials, which allow interaction with cells only on the surface of the implant or enable ingrowth of cells inside the material. Information is also provided on the most important properties of bone cells taking part in bone tissue development, and on diseases and regeneration. The most common cell types used for testing cell-material interaction in vitro are listed, and the most commonly used approaches to this testing are also mentioned. A considerable part of this review is dedicated to the physical and chemical properties of the material surface, which are decisive for the cell-material interaction, and also to modifications to the surface of the material aimed at integrating it better with the surrounding bone tissue. Special attention is paid to the effects of nanoscale and microscale surface roughness on cell behaviour, to material surface patterning, which allows regionally-selective adhesion and growth of cells, and also to the surface chemistry. In addition, coating the materials with bioactive layers is examined, particularly those created by deposition of fullerenes, hybrid metal-fullerene composites, carbon nanotubes, nanocrystalline diamond films, diamond-like carbon, and nanocomposite hydrocarbon plasma polymer films enriched with metals.  相似文献   

18.
The physicochemical properties of spores were studied in relationship of their structure, which was modulated by chemical or genetic methods. The Bacillus subtilis spores were equilibrated at different water activities (from 0.113 to ~1) and investigated by differential scanning calorimetry (DSC). The isothermal sorptions at 25 °C of the native and the modified spores were also used to analyse the DSC results. As already reported in literature, an endothermic peak in DSC was found at about 70 °C, but a previously unreported baseline shift, a ∆Cp step, was also observed at −69 °C. The endothermic peak found at 70 °C was assigned to a material relaxation which corresponded to a structure change from a less mobile state to a more mobile state. The spore cortex material seems to be mainly implicated in this event. The ∆Cp step observed at −69 °C was identified as a glass transition of the water in the spore protoplast. These results showed that at room temperature, the physical state of the components within B. subtilis spores equilibrated at water activity levels below 0.3 was different: The cortex material is in a low mobility state whereas confined structure of protoplast and its internal hydration level allow a certain mobility of water molecules.  相似文献   

19.
《Epigenetics》2013,8(3):176-184
Multiple clinical trials are investigating the use of the DNA methylation inhibitors azacitidine and decitabine for the treatment of solid tumors. Clinical trials in hematological malignancies have shown that optimal activity does not occur at their maximum tolerated doses but selection of an optimal biological dose and schedule for use in solid tumor patients is hampered by the difficulty of obtaining tumor tissue to measure their activity. Here we investigate the feasibility of using plasma DNA to measure the demethylating activity of the DNA methylation inhibitors in patients with solid tumors. We compared four methods to measure LINE-1 and MAGE-A1 promoter methylation in T24 and HCT116 cancer cells treated with decitabine treatment and selected Pyrosequencing for its greater reproducibility and higher signal to noise ratio. We then obtained DNA from plasma, peripheral blood mononuclear cells, buccal mucosa cells and saliva from ten patients with metastatic solid tumors at two different time points, without any intervening treatment. DNA methylation measurements were not significantly different between time point 1 and time point 2 in patient samples. We conclude that measurement of LINE-1 methylation in DNA extracted from the plasma of patients with advanced solid tumors, using Pyrosequencing, is feasible and has low within patient variability. Ongoing studies will determine whether changes in LINE-1 methylation in plasma DNA occur as a result of treatment with DNA methylation inhibitors and parallel changes in tumor tissue DNA.  相似文献   

20.
AIMS: The development of a rapid method for the selective detection and enumeration of the total and viable vegetative cell and spore content of thermophilic bacilli in milk powder by PCR. METHODS AND RESULTS: Quantitative PCR and microscopy indicate the presence of up to 2.9 log units more cells in milk powder than accounted for by plate counting due to the majority of cells being killed during milk processing. Two approaches for viable and dead cell differentiation of thermophilic bacilli by quantitative PCR were evaluated, these being the nucleic binding dye ethidium monoazide (EMA) and DNase I digestion. The former agent exposed to a viable culture of Anoxybacillus flavithermus caused considerable cell inactivation. In contrast, DNase I treatment had no effect on cell viability and was utilized to develop DNA extraction methods for the differential enumeration of total, viable vegetative cells and spores in milk powder. Moreover, the methods were further applied and evaluated to 41 factory powder samples taken throughout eight process runs to assess changes in numbers of vegetative cells and spores with time. DNase I treatment reduced vegetative cell numbers enumerated with PCR by up to 2.6 log units. The quantification of spores in the factory milk powders investigated indicates on average the presence of 1.2 log units more spores than determined by plate counting. CONCLUSIONS: The method presented in this study provides the ability to selectively enumerate the total and viable cell and spore content of reconstituted milk. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study provides a tool to monitor the extent of thermophilic contamination during milk powder manufacturing 60-90 min after sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号