首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting climate change impacts on animal communities requires knowledge of how physiological effects are mediated by ecological interactions. Food‐dependent growth and within‐species size variation depend on temperature and affect community dynamics through feedbacks between individual performance and population size structure. Still, we know little about how warming affects these feedbacks. Using a dynamic stage‐structured biomass model with food‐, size‐ and temperature‐dependent life history processes, we analyse how temperature affects coexistence, stability and size structure in a tri‐trophic food chain, and find that warming effects on community stability depend on ecological interactions. Predator biomass densities generally decline with warming – gradually or through collapses – depending on which consumer life stage predators feed on. Collapses occur when warming induces alternative stable states via Allee effects. This suggests that predator persistence in warmer climates may be lower than previously acknowledged and that effects of warming on food web stability largely depend on species interactions.  相似文献   

2.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

3.
Global warming impacts natural communities through effects on performance of individual species and through changes in the strength of interactions between them. While there is a body of evidence of the former, we lack experimental evidence on potential changes in interaction strengths. Knowledge about multispecies interactions is fundamental to understand the regulation of biodiversity and the impact of climate change on communities. This study investigated the effect of warming on a simplified community consisting of three species: rosy apple aphid Dysaphis plantaginea feeding on plantain, Plantago lanceolata, and a heterospecific neighbouring plant species, perennial ryegrass, Lolium perenne. The aphid does not feed on L. perenne. The experimental design consisted of monocultures and mixtures of L. perenne and P. lanceolata at three temperature levels. We did not find indication for indirect temperature effects on D. plantaginea through changes in leaf nitrogen or relative water content. However, experimental warming affected the life history traits of the aphid directly, in a non‐linear manner. Aphids performed best at moderate warming, where they grew faster and had a shorter generation time. In spite of the increased population growth of the aphids under warming, the herbivory rates were not changed and consequently the plant–herbivore interaction was not altered under warming. This suggests reduced consumption rates at higher temperature. Also plant competition affected the aphids but through an interaction with temperature. We provide proof‐of‐concept that net interactions between plants and herbivores should not change under warming despite direct effects of warming on herbivores when plant–plant interaction are considered. Our study stresses the importance of indirect non–trophic interactions as an additional layer of complexity to improve our understanding of how trophic interactions will alter under climate change.  相似文献   

4.
Body‐size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature‐size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three‐species food chain using a temperature‐dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer‐resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.  相似文献   

5.
Despite the importance of seed dispersal in a plant's life cycle, global patterns in seed dispersal distance have seldom been studied. This paper presents the first geographically and taxonomically broad quantification of the latitudinal gradient in seed dispersal distance. Although there is substantial variation in the seed dispersal distances of different species at a given latitude, seeds disperse on average more than an order of magnitude further at the equator than towards the poles. This pattern is partially explained by plant life‐history traits that simultaneously associate with seed dispersal distance and latitude, including dispersal mode and plant height. The extended seed shadow of tropical plants could increase the distance between conspecific individuals. This could facilitate species coexistence and contribute to the maintenance of high plant diversity in tropical communities. The latitudinal gradient in dispersal distance also has implications for species’ persistence in the face of habitat fragmentation and climate change.  相似文献   

6.
Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran–dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food‐chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm‐acclimated larvae have a higher maximum predation rate than cold‐acclimated ones, and (3) long‐term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food‐web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food‐web stability.  相似文献   

7.
1. In natural communities, multiple host and parasitoid species are linked to form complex networks of trophic and non‐trophic interactions. Understanding how these networks will respond to global warming is of wide relevance for agriculture and conservation. 2. This study synthesises the emerging evidence surrounding host–parasitoid networks in the context of global warming. The suite of direct and indirect interaction types within host–parasitoid networks is summarised, as well as their sensitivity to temperature changes. The study also compiles and reviews studies investigating the responses of whole host–parasitoid networks to increasing temperatures or proxy variables. The findings reveal there is limited evidence overall for the prediction that parasitism will be reduced under global warming: approximately equal numbers of studies show elevated and reduced parasitism. 3. Increasingly, endosymbiotic bacteria are recognised as influential mediators of host–parasitoid interactions. These endosymbionts can change how individual species respond to global warming, and their effects can cascade to affect whole host–parasitoid networks. The evidence that symbiotic bacteria are likely to affect the response of host–parasitoid networks to global warming is reviewed. Symbionts can protect hosts from their parasitoids or influence thermal tolerance of their host species. Furthermore, the symbionts themselves can be impacted by global warming. 4. Finally, the study considers the most promising avenues for future research into the mechanisms structuring host–parasitoid networks in the context of global warming. Alongside the increasing availability of modern molecular methods to document the structure of real, species‐rich host–parasitoid networks, the study highlights the utility of manipulative experiments and mathematical models.  相似文献   

8.
Aim Adaptive trait continua are axes of covariation observed in multivariate trait data for a given taxonomic group. These continua quantify and summarize life‐history variation at the inter‐specific level in multi‐specific assemblages. Here we examine whether trait continua can provide a useful framework to link life‐history variation with demographic and evolutionary processes in species richness gradients. Taking an altitudinal species richness gradient for Mediterranean butterflies as a study case, we examined a suite of traits (larval diet breadth, adult phenology, dispersal capacity and wing length) and species‐specific habitat measures (temperature and aridity breadth). We tested whether traits and species‐specific habitat measures tend to co‐vary, whether they are phylogenetically conserved, and whether they are able to explain species distributions and spatial genetic variation in a large number of butterfly assemblages. Location Catalonia, Spain. Methods We formulated predictions associated with species richness gradients and adaptive trait continua. We applied principal components analyses (PCAs), structural equation modelling and phylogenetic generalized least squares models. Results We found that traits and species‐specific habitat measures covaried along a main PCA axis, ranging from multivoltine trophic generalists with high dispersal capacity to univoltine (i.e. one generation per year), trophic specialist species with low dispersal capacity. This trait continuum was closely associated with the observed distributions along the altitudinal gradient and predicted inter‐specific differences in patterns of spatial genetic variability (FST and genetic distances), population responses to the impacts of global change and local turnover dynamics. Main conclusions The adaptive trait continuum of Mediterranean butterflies provides an integrative and mechanistic framework to: (1) analyse geographical gradients in species richness, (2) explain inter‐specific differences in population abundances, spatial distributions and demographic trends, (3) explain inter‐specific differences in patterns of genetic variation (FST and genetic distances), and (4) study specialist–generalist life‐history transitions frequently involved in butterfly diversification processes.  相似文献   

9.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

10.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

11.
According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant–herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.  相似文献   

12.
1. Patterns of species richness and species assemblage composition of ground‐dwelling arthropods in primary successions along glacier forelands are traditionally described using a taxonomic approach. On the other hand, the functional trait approach could ensure a better characterisation of their colonisation strategies in these types of habitat. 2. The functional trait approach was applied to investigate patterns of functional diversity and life‐history traits of ground beetles and spiders on an alpine debris‐covered glacier and along its forefield in order to describe their colonisation strategies. 3. Ground beetles and spiders were sampled at different successional stages, representing five stages of deglaciation. 4. The results show that the studied glacier hosts ground beetle and spider assemblages that are mainly characterised by the following traits: walking colonisers, ground hunters and small‐sized species. These traits are typical of species living in cold, wet, and gravelly habitats. The diversity of functional traits in spiders increased along the succession, and in both carabids and spiders, life‐history traits follow the ‘addition and persistence model’. Accordingly, there is no turnover but there is an addition of new traits and a variation in their proportion within each species assemblage along the succession. The distribution of ground beetles and spiders along the glacier foreland and on the glacier seems to be driven by dispersal ability and foraging strategy. 5. The proposed functional approach improves knowledge of the adaptive strategies of ground‐dwelling arthropods colonising glacier surfaces and recently deglaciated terrains, which represent landforms quickly changing due to global warming.  相似文献   

13.
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

14.
Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait 'the number of broods per year' was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.  相似文献   

15.
Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land‐use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local‐scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study.  相似文献   

16.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

17.
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait‐based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long‐term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series‐data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long‐term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi‐trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long‐term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi‐trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.  相似文献   

18.
Climate change poses an immediate threat to the persistence and distribution of many species, yet our ability to forecast changes in species composition is hindered by poor understanding of the extent to which higher trophic‐level interactions may buffer or exacerbate the adverse effects of warming. We incorporated species‐specific consumption data from 240 wolf‐killed elk carcasses from Yellowstone National Park into stochastic simulation models to link trends in the El Niño Southern Oscillation (ENSO) to food procurement by a guild of scavengers as a function of gray wolf reintroduction. We find that a shift in ENSO towards the El Niño (warming) phase of the cycle coincident with increasing global temperatures reduces carrion for scavengers, particularly those with strong seasonal patterns in resource use such as grizzly bears. Wolves alleviate these warming‐induced food shortages by rendering control over this crucial resource to biotic rather than abiotic factors. Ecosystems with intact top predators are likely to exhibit stronger biotic regulation and should be more resistant to climate change than ecosystems lacking them.  相似文献   

19.
Aim Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities.  相似文献   

20.
Global climate change is predicted to have large impacts on the phenology and reproduction of alpine plants, which will have important implications for plant demography and community interactions, trophic dynamics, ecosystem energy balance, and human livelihoods. In this article we report results of a 3‐year, fully factorial experimental study exploring how warming, snow addition, and their combination affect reproductive phenology, effort, and success of four alpine plant species belonging to three different life forms in a semiarid, alpine meadow ecosystem on the central Tibetan Plateau. Our results indicate that warming and snow addition change reproductive phenology and success, but responses are not uniform across species. Moreover, traits associated with resource acquisition, such as rooting depth and life history (early vs. late flowering), mediate plant phenology, and reproductive responses to changing climatic conditions. Specifically, we found that warming delayed the reproductive phenology and decreased number of inflorescences of Kobresia pygmaea C. B. Clarke, a shallow‐rooted, early‐flowering plant, which may be mainly constrained by upper‐soil moisture availability. Because K. pygmaea is the dominant species in the alpine meadow ecosystem, these results may have important implications for ecosystem dynamics and for pastoralists and wildlife in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号