首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Luteolysis was induced in 5 experimental Beagle (8 cycles) and 7 client-owned bitches treated with 150 to 200 microg/kg, sc of prostaglandin F2alpha administered twice daily for 4 d, starting on Days 8 to 19 after the onset of cytological diestrus. Five experimental Beagle bitches had been mated during the estrus preceding treatment, and copulation had been confirmed in 2/7 client-owned bitches presented for termination of unwanted pregnancy. Serum progesterone concentration (mean +/- SD) declined from 26.1 +/- 66 ng/ml before treatment to 0.3 +/- 0.4 ng/ml on the fourth day of treatment One of the 7 client-owned bitches maintained her pregnancy even though serum progesterone concentrations were less than 0.5 ng/ml on the third and fourth day of treatment. Mean (+/- SEM) inter-estrous intervals before and following prostaglandin-induced luteolysis were 207.3 +/- 12.4 (n = 11 cycles in 6 bitches) and 95.5 +/- 20.0 d (n = 6 cycles in the same 6 bitches; P < 0.0001), respectively These results suggest that effective prostaglandin-induced luteolysis can be achieved with administration of 180 microg/kg during the third week of diestrus in pregnant and nonpregnant bitches.  相似文献   

2.
Beagle bitches were treated with equine anti-LH serum (ALHS) or the dopamine agonist bromocriptine at selected times during the 2-month luteal phase of the ovarian cycle or pregnancy. After a single injection of ALHS (10 ml, i.m.) at Day 42 of pregnancy (N = 2) or the ovarian cycle (N = 3), progesterone was reduced (P less than 0.05) to 7-24% of preinjection values within 1-2 days, and by 4-8 days returned to levels not different from those in control bitches treated with normal horse serum. Injections of bromocriptine (0.1 mg/kg, i.m.) daily for 6 days caused abrupt declines in progesterone which lasted 6-8 days in bitches treated at Day 8 or 22 of pregnancy (N = 5). In bitches treated at Day 42 of pregnancy (N = 3) or in non-pregnant cycles (N = 4) the bromocriptine treatment caused declines (P less than 0.05) in progesterone which were permanent, extensive (less than 2 ng/ml), and therefore abortive. The declines in progesterone in response to immunoneutralization of LH and to prolactin-lowering doses of a dopamine agonist demonstrate that normal luteal function in dogs requires both LH and prolactin.  相似文献   

3.
Concentrations of testosterone and of androstenedione were determined by radioimmunoassay in serum samples collected every 2-5 days throughout the periovulatory and luteal phases of the ovarian cycles of pregnant and nonpregnant beagle bitches. Testosterone levels were consistently lower than those of androstenedione, reached peaks of 29 +/- 4 ng/dl near the time of the preovulatory luteinizing hormone peak, and were reduced to near the limits of detection (less than or equal to 5-10 ng/dl) throughout the luteal phase. Androstenedione levels reached preovulatory peaks of 73 +/- 13 ng/dl, were 54 +/- 7 ng/ml during early estrus, increased (P less than 0.05) to early luteal phase peaks of 76 +/- 8 ng/dl between Days 6 and 18, and then declined to 41 +/- 5 ng/dl by Day 35-40 in both pregnant (n = 8) and nonpregnant (n = 4) bitches. Subsequent protracted increases in androstenedione occurred in 4 of 8 pregnancies but in none of the nonpregnant bitches. From Days 42 to 64 the differences in mean levels between pregnant (45 +/- 2 ng/ml) and nonpregnant (32 +/- 3 ng/ml) bitches was not significant (P greater than 0.05). At parturition androstenedione levels fell (P less than 0.05) abruptly from 39 +/- 7 to 13 +/- 3 ng/dl. These results suggest that, in the bitch, androstenedione is the major circulating androgen during the follicular and luteal phases and that patterns of androstenedione levels during the luteal phase parallel those reported for progesterone in pregnant and nonpregnant bitches, including maintenance of elevated levels throughout gestation and an abrupt decline at parturition.  相似文献   

4.
The 34 French Alpine dairy goats originated from a single flock and were artificially inseminated 44 h after synchronization of oestrus. They were bled daily at the jugular vein from 15 to 27 days after AI. An early pregnancy diagnosis by RIA of progesterone concentration was performed 21 days after AI. In pregnant goats (greater than 1.5 ng progesterone/ml) daily sampling was extended until 30 days after AI and, from those, 9 were bled every 2 weeks until the end of pregnancy and at 50 and 63 days post partum. Pregnancy-specific protein B (PSPB) was also assayed. The kidding rate was 67.6% (23/34). PSPB concentrations (ng/ml) in pregnant goats were significantly different from those of non-pregnant goats at 24 days after AI (0.82 +/- 0.18 vs 1.78 +/- 0.19; mean +/- s.e.m.) and rose to 40 ng/ml at the end of pregnancy. From Day 25 and throughout gestation, females with 2 fetuses had higher PSPB concentrations than did those with a single fetus (P less than 0.05). In the 2 goats exhibiting late embryonic mortality according to progesterone concentrations, one had a PSPB profile very similar to those of pregnant goats until 30 days while the other did not show any elevation of PSPB concentration. It is concluded that PSPB profiles in goats are similar to those found in cows throughout pregnancy and that PSPB RIA may be useful for pregnancy diagnosis or diagnosis of late embryonic mortality.  相似文献   

5.
Plasma oestradiol-17 beta concentrations in Labradors increased during pro-oestrus to an average maximal concentration of of 79-7 +/- 10-9 (S.D.) pg/ml, and then fell rapidly. In 6/7 bitches the peak occurred within 1 day of oestrus. No consistent changes in plasma oestradiol levels were observed during pregnancy and at parturition and the values were similar to those in late anoestrus. Plasma progesterone levels did not increase markedly during pro-oestrus. At oestrus, progesterone values rose and maximal concentrations, which varied from about 20 to about 55 ng/ml, were reached within a few days of the oestradiol peak. Plasma progesterone decreased in late pregnancy and in one of the three bitches studied in detail low or undetectable levels were reached 10 days before parturition. In the other two bitches an abrupt decrease in progesterone occurred just before parturition. Dexamethasone treatment (2 X 5 mg daily for 10 days) from Day 30 of pregnancy resulted in intrauterine death and resorption of the fetuses in the two bitches studied. Treatment from about Day 45 resulted in the birth of dead fetuses at Days 55 and 59 of pregnancy. The changes in plasma oestradiol levels were very small. No changes in plasma progesterone levels were seen when dexamethasone was given in late pregnancy, but an accelerated decline occurred after treatment in mid-pregnancy.  相似文献   

6.
Blood samples were collected for the measurement of progesterone concentrations from 320 Holstein-Friesian heifers on Days 7 and 21 post-estrus. All animals were the recipients of either a fresh or previously frozen embryo on Day 7 and were palpated for pregnancy on Day 60 post-estrus. At the time of transer, progesterone levels were highly variable and were not strongly related to subsequent pregnancy status. There was a tendency for lower pregnancy rates in heifers receiving fresh embryos if progesterone levels were less than 1 ng/ml (33 vs 64% overall), and for previously frozen embryos when progesterone concentrations were less than 3 ng/ml (34 vs 44% overall). Progesterone concentrations were not related to subjective evaluation of corpus luteum quality by palpation per rectum. No heifers which maintained pregnancy had progesterone levels less than 1 ng/ml on Day 21. Only 41% of 247 heifers receiving either fresh or previously frozen embryos that were not pregnant on Day 60 had progesterone concentrations less than 1 ng/ml on Day 21. These data suggest that many recipients that do not maintain a pregnancy will experience an extended estrous cycle after transfer.  相似文献   

7.
Subcutaneous injection of serotonin (20 mg/kg) on Day 5 of pregnancy disrupts implantation in the rat as indicated by the reduction in number of live fetuses/cornu present on Day 19 (0.9 vs. 6.1, treated vs. control). Such disruption of implantation possibly results from impaired decidualization. To test for suppression of decidualization, serotonin was administered to pseudopregnant rats on the day before, on (Day 4) or after artificial induction of the decidual cell reaction. Relative to saline-treated controls (C), serotonin (S) reduced decidualization when injected either before [C: 1987 +/- 130 vs. S: 1085 +/- 155 mg (Day 3); P less than 0.005] or after [C: 1987 +/- 130 vs. S: 173 +/- 8 mg (Day 5); P less than 0.001] administration of the deciduogenic stimulus. In addition, serotonin markedly decreased uterine blood flow (C: 0.47 +/- 0.05 vs. S: 0.25 +/- 0.06 ml/min per g; P less than 0.01) during pseudopregnancy. However, serotonin altered neither the duration of luteal function in pseudopregnant rats (C: 15.3 vs. S: 14.3 days) nor serum progesterone levels (C: 74-91 vs. S: 53-82 ng/ml) in pregnant animals. It is concluded that serotonin may disrupt implantation, in part, by suppression of decidualization. The loss of endometrial competence to undergo decidualization appears to be a consequence of serotonin-induced uterine ischemia rather than impaired corpus luteum activity.  相似文献   

8.
Body temperature responses and the timing of abortions were evaluated in pregnant bitches with the anti-progestin aglepristone. Fifteen purebred and crossbred, 25-45 days pregnant, were included in this study and seven untreated bitches at the same stage of pregnancy served as controls. Treated bitches were administered two applications of aglepristone (10 mg/kg SC) 24 h apart for pregnancy termination. Pregnancy termination was confirmed by ultrasonographic assessment. Body temperature was rectally measured three times a day for 6 days beginning 24 h before treatment or pregnancy diagnosis in the treated and control bitches, respectively. Additionally, serum progesterone concentrations were assessed at time points during the study in the treated bitches. Pregnancy was terminated in 14 treated bitches in a mean+/-S.E.M. of 4.3+/-0.7 days after treatment. Control bitches remained pregnant. In the treated bitches, but not in the controls, body temperature significantly decreased 24 h after the beginning of the treatments (P < 0.01) and then gradually returned to pre-treatment values. Correlation between the day of mean minimum body temperature and the day of pregnancy termination was low (0.07; > 0.05). Progesterone did not show significant change throughout the study. Body temperature does not seem to be a suitable variable to clinically monitor the aborting effect of aglepristone. Decrease of body temperature after aglepristone treatment could represent further evidence of its hypothalamic effects.  相似文献   

9.
A sensitive and specific double-antibody RIA for a bovine pregnancy-associated glycoprotein (bPAG) is described. The limit of detection was 0.2 ng/ml. The assay was specific for bPAG in that pituitary and placental gonadotropic hormones and other placental or serum proteins assayed in serial dilutions did not cross-react. The RIA allowed measurement of bPAG in placental extracts, fetal serum, fetal fluids, and serum or plasma of pregnant cows. About 20% of unbred heifers and nonpregnant cows had detectable levels ranging from 0.30 +/- 0.09 to 0.50 +/- 0.17 ng/ml (mean +/- SD), and 15% of bull sera showed higher concentrations (3.01 +/- 1.73 ng/ml) of bPAG or bPAG-like protein. Variations among animals was observed in fetal serum bPAG concentrations. Bovine PAG was detected in maternal peripheral blood at Day 22 of pregnancy (mean +/- SD, 0.38 +/- 0.13 ng/ml) in some animals and at Day 30 in all pregnant cows. Peripheral serum bPAG levels increased progressively to 3.60 +/- 1.73 ng/ml (mean +/- SD) at Day 30 of pregnancy, to 24.53 +/- 8.81 ng/ml at Day 120, and to 1551.91 +/- 589.68 ng/ml at Day 270. Peak concentration of bPAG was 2462.42 +/- 1017.88 ng/ml and it occurred 1-5 days prior to parturition. After delivery, bPAG concentrations decreased steadily to 499.63 +/- 267.20 ng/ml at Day 14 postpartum (pp), 10.12 +/- 7.84 ng/ml at Day 60 pp, and 1.44 +/- 1.08 ng/ml at Day 90 pp. The undetectable concentration (less than 0.20 ng/ml) was reached by Day 100 +/- 20 pp. An investigation undertaken in Holstein heifers, Holstein cows, and Hereford cows used as recipients for purebred Holstein embryos supplied evidence of the influence of breed of recipient and sex of fetuses on peripheral concentrations of bPAG. A herd of 430 Holstein-Friesian heifers that had received transferred embryos were bled at Day 35 postestrus (pe) for measurement of bPAG. The bPAG was detected in 287 of 430 serum samples analyzed. By rectal palpation performed at Day 45 pe, 267 heifers with detectable levels of bPAG at Day 35 pe were confirmed to be pregnant as were 3 of 143 heifers previously diagnosed as not pregnant by RIA. These results suggest that detection of this placental-specific antigen in the serum could be used as a specific serological method for early pregnancy diagnosis in cattle from 28 days after breeding.  相似文献   

10.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

11.
Preliminary studies in anestrous Beagle bitches demonstrated that a single injection of gonadotropin-releasing hormone (150 micrograms) produced a rapid, physiological rise in serum estradiol lasting 1-3 days while progesterone remained below 1 ng/ml, whereas serial injections of FSH rapidly produced greater elevations in estradiol and a rapid rise in progesterone over 2 ng/ml. Consequently, attempts to induce fertile ovulation by means of pulsatile intravenous administration of GnRH (1 pulse/1.5 hours for 6-12 days; 0.04-0.43 micrograms/kg body weight/pulse) were conducted in eight anestrous bitches. Willingness to mate, serum progesterone levels and results of mating were monitored. In six of the eight bitches, vulval and vaginal signs of proestrus occurred by Day 2-4 after initiation of treatment (Day 0); but, two bitches showed negligible responses. In five of the six bitches in which proestrus was induced, behavioral (n = 4) and vaginal (n = 5) correlates of early estrus occurred by Day 5-7 of treatment and breedings occurred over a period of 4-12 days. Following onset of estrus, four of the five bitches had increases in serum progesterone levels between Days 14 and 18 after initiation of treatment (and 4-11 days after cessation of treatment); three of them became pregnant and whelped normal litters (ranging from 9 to 11 pups). The fifth bitch did not have elevated progesterone during the induced estrus, and upon return to estrus one month later was successfully bred and whelped a normal litter of 10 pups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Circulating concentrations of progesterone, progesterone-binding plasma proteins (PBPP) and oestradiol-17 beta in pregnant porcupines remained relatively low until Days 25-30 post coitum. Progesterone values peaked (102-180 ng/ml; N = 3) 42-60 days post coitum and the rapid increase in oestradiol-17 beta concentrations approximated that of progesterone with peak values (170-210 pg/ml) being attained 60-85 days post coitum. The pattern of PBPP synthesis, as suggested by circulating concentrations, was closely related to that of plasma progesterone, with values remaining low (less than 20 pmol/ml) until Day 31 post coitum, reaching peak levels at Days 50-56 and Days 73-77 post coitum. The production of PBPP during pregnancy is, as in related New World hystricomorph species, considered to be a mechanism which facilitates a reduction in the rate of progesterone metabolism during pregnancy.  相似文献   

13.
Estradiol (E2), testosterone (T) and progesterone (P4) concentrations were determined by enzyme-immunoassay in aqueous extracts of fecal samples obtained during anestrus, proestrus, estrus and metestrus of 11 nonpregnant and 11 pregnant bitches. Fecal hormone concentrations (ng/g) changed in relation to stage of cycle. Mean fecal steroid concentrations in 22 anestrous bitches and 3 ovariectomized bitches were low and similar for E2 (53 +/- 5 and 27 +/- 2), T (60 +/- 7 and 36 +/- 6), and P4 (62 +/- 6 and 86 +/- 15). Within 0 to 3 d of the ovulatory LH surge fecal E2 reached peak concentrations (301 +/- 38). The T peaks (281 +/- 41) were coincident or 1 to 3 d later. Fecal P4 was then elevated for approximately 2 m.o. Between Days 26 and 45 after ovulation, mean fecal P4 concentrations were higher (P < 0.05) in pregnant (401 +/- 60) than in nonpregnant bitches (164 +/- 23) and peak fecal P4 concentrations in individual animals were higher (P < 0.01) in pregnant (812 +/- 121) than in nonpregnant bitches (425 +/- 97). In the same period mean concentrations of E2 (117 +/- 13 vs 61 +/- 5) and T (102 +/- 10 vs 70 +/- 6) were also higher (P < or = 0.05) in pregnant than in nonpregnant bitches. Serum E2, T and P4 concentration were positively correlated (P = 0.1) with concentration in fecal samples obtained one day after serum collection. Although serial fecal ovarian steroid concentrations demonstrate the time course of ovulatory cycles, the diagnostic value of individual fecal samples appears limited. The ratios of peak to basal values were approximately 6, 5 and 7 for E2, T and P4, respectively, and were considerably lower than ratios of 12 to 50 previously reported for serum or plasma concentrations. The results demonstrate that there are pregnancy-specific increases in P4, E2 and T production reflected in fecal concentrations. While such increases are reflected in fecal samples, they are generally not evident in serum or plasma concentrations because of increased hemodilution, metabolism and clearance in pregnant bitches. The physiological stimulus for these increases, presumably ovarian in origin, or the potential role of prolactin is not known.  相似文献   

14.
The minimum progesterone concentration required to maintain the pregnancy was studied by varying doses of progesterone given subcutaneously to rats ovariectomized on Day 8 of pregnancy. Injecting 3 mg progesterone plus 200 ng oestradiol benzoate daily provided serum progesterone values between 25.4 +/- 7.0 and 35.2 +/- 6.2 ng/ml throughout Days 10-19 which were significantly lower than normal levels (P less than 0.05), but resulted in 93.6% of fetal survival on Day 19 which was not significantly different from 93.3% in the control group. Injecting 2 mg progesterone plus 200 ng oestradiol benzoate daily gave progesterone values between 13.2 +/- 4.6 and 19.0 +/- 6.2 ng/ml and could not maintain fetal viability to Day 19 (14.2%, P less than 0.05 compared with control group). Critical times to supplement progesterone in rats ovariectomized on Day 8 or Day 15 were studied by varying the time of progesterone implantation after ovariectomy. Progesterone implants were administered 8, 12 and 24 h after ovariectomy on Day 8 and 24, 36 and 48 h after ovariectomy on Day 15. On Day 8, progesterone replacement could be delayed to 8 h but not 12 h, while on Day 15, progesterone replacement could be delayed up to 36 h but not 48 h after ovariectomy without affecting fetal survival.  相似文献   

15.
The aim of this study was to determine whether sodium cloprostenol administered at a continuous low dosage induced luteolysis and polydipsia in early dioestrous bitches. Sodium cloprostenol was administered subcutaneously to greyhounds at doses of 4.04-5.19 microg/kg/day (treated group, n=5) or 0 microg/kg/day (control group, n=5) delivered by mini-osmotic pumps for 7 days. The treated bitches and two of the control bitches were in early dioestrus (Days 5-14, and 6 and 10, respectively) when the mini-osmotic pump was inserted (Day 0). Concentrations of plasmatic progesterone were measured in dioestrous bitches each day from Day -2 to 7, and then weekly until Day 90. Daily intake of water was ascertained in all bitches from Day -2 until Day 10, and their weight was measured on Days -2, 6 and 13. Biochemical analyses on plasma for concentrations of urea and glucose, and urinalyses were performed on all bitches before (Day -1), during (Day 4) and after treatment (Day 10). Concentrations of plasmatic progesterone declined dramatically and rapidly in treated bitches after Day 0 to <2.9 ng/ml but were not similarly affected in the dioestrous control bitches. However, in three of five treated bitches, concentrations of plasmatic progesterone increased to >1 ng/ml in the period from Day 10 to 90 indicating that luteolysis was incomplete. All treated bitches were polydipsic (intake of water >100 ml/kg/day) for 2-6 days during the period of treatment, and for 0-2 days immediately after treatment (Days 7 and 8). One control bitch was polydipsic on Days -2, -1 and 0. The treated bitches were also polyuric since they were hyposthenuric (<1.007, n=4) or isothenuric (1.010, n=1) on Day 4, their weight did not increase and no gastrointestinal or respiratory effects were observed. The control bitches were always hypersthenuric when measured during and after treatment (>1.021). Biochemical analyses of plasma and other data obtained from urinalyses did not reveal any differences between groups. This study indicated that sodium cloprostenol administered at a continuous low dosage induced polydipsia and suppressed luteal function in early dioestrous bitches.  相似文献   

16.
Heifers slaughtered on Day 18/19 of pregnancy had significantly higher (P less than 0.001) concentrations of PGE-2 (measured as its methyl oxime) in uterine flushings than did animals slaughtered on Days 6 or 12 of pregnancy, or on Days 6 or 12 of the oestrous cycle. In addition, concentrations were higher in the uterine horn ipsilateral to the corpus lueum on Days 12 (P less than 0.05) and 18/19 (P less than 0.01) than in the contralateral horn. Incubation of dispersed luteal cells for 3 h with LH (0.1 or 100 ng/ml) and/or PGE-2 (0.01-1000 ng/ml) in vitro showed no differences in basal progesterone production or in the responses to exogenous hormones between pregnant and non-pregnant cattle. However, low doses of PGE-2 (0.01-10 ng/ml) inhibited the stimulation of progesterone secretion by the lower dose of LH. These findings indicate that although PGE-2 can stimulate progesterone synthesis by luteal cells it may also have inhibitory effects, and therefore its role in pregnancy requires further definition.  相似文献   

17.
To investigate the endocrine cause of reproductive suppression in nonbreeding female naked mole-rats, animals from 35 colonies were studied in captivity. Urinary and plasma progesterone concentrations were elevated in pregnant females (urine: 10.0-148.4 ng/mg Cr, 27 samples from 8 females; plasma: 3.6-30.0 ng/ml, 5 samples from 5 females; Days 21-40 of pregnancy) and cyclic breeding females (urine: 0.5-97.8 ng/mg Cr, 146 samples from 7 females; plasma: less than 1.0-35.4 ng/ml, 25 samples from 7 females). The latter group showed cyclic patterns of urinary progesterone, indicating a mean ovarian cycle length of 34.4 +/- 1.6 days (mean +/- s.e.m.) with a follicular phase of 6.0 +/- 0.6 days and a luteal phase of 27.5 +/- 1.3 days (19 cycles from 9 breeding females). In non-breeding females urinary and plasma progesterone values were undetectable (urine: less than 0.5 ng/mg Cr, 232 samples from 64 females; plasma: less than 1.0 ng/ml, 7 samples from 6 females). Breeding females had higher (P less than 0.001) plasma LH concentrations (3.0 +/- 0.2 mi.u./ml, 73 samples from 24 females) than did non-breeding females (1.6 +/- 0.1 mi.u./ml, 57 samples from 44 females). Urinary and plasma progesterone concentrations in non-breeding females from wild colonies situated near Mtito Andei, Kenya, were either below the assay sensitivity limit (urine: less than 0.5 ng/mg Cr, 11 females from 2 colonies; plasma: less than 1.0 ng/ml, 25 females from 4 colonies), or very low (plasma: 1.6 +/- 0.6 ng/ml, 15 females from 4 colonies). In captivity, non-breeding females removed from their colonies (i.e. the dominant breeding female) and either paired directly with a non-breeding male (N = 2), or removed and housed singly for 6 weeks before pairing with a non-breeding male (N = 5) may develop a perforate vagina for the first time in as little as 7 days. Urinary progesterone concentrations rose above 2.0 ng/mg Cr (indicative of a luteal phase) for the first time 8.0 +/- 1.9 days after being separated. These results suggest that ovulation is suppressed in subordinate non-breeding female naked mole-rats in captive and wild colonies, and show that plasma LH concentrations are significantly lower in these non-breeding females. This reproductive block in non-breeding females is readily reversible if the social factors suppressing reproduction are removed.  相似文献   

18.
Plasma progesterone concentrations were determined weekly during gestation averaging 283 +/- 2 d in Ethiopian zebu (Bos indicus) cows. Mean progesterone levels increased from 0.2 +/- 0.1 ng/ml at oestrus (service) to 3.1 +/- 1.6 ng/ml on d 7 and 8.1 +/- 2.1 ng/ml on d 21. Progesterone levels remained elevated throughout pregnancy. Hormone concentration differed significantly between cows (P less than 0.001) and with the wk of pregnancy (P less than 0.05); it tended to be higher during the last trimester of pregnancy. Mean levels dropped sharply to below 1 ng/ml during the last wk of pregnancy with considerable variation (C.V. = 39 to 63%) among cows. These data indicate that pregnancy in Ethiopian zebu cows can be reliably diagnosed by determining circulatory plasma progesterone levels.  相似文献   

19.
Menchaca A  Rubianes E 《Theriogenology》2002,57(5):1411-1419
We studied the relationship between progesterone (P4) concentrations early in the estrus cycle and follicular dynamics in dairy goats. We used seven untreated goats (control group) and six progesterone treated goats (P group) with a controlled internal drug release device from Days 0 to 5 (Day 0: day of ovulation). We performed daily ultrasonograph during the interovulatory interval to determine ovarian change and took daily blood samples to determine serum estradiol 17beta (E2) and P4 concentrations by RIA. We divided the control goats into 3- (n = 4) and 4-wave goats (n = 3), according to the number of follicular waves recorded during the ovulatory cycle. Mean progesterone concentrations between Days I and 5 were higher and mean estradiol concentrations between Days 3 and 5 were lower in 4-wave goats (P4: 3.8+/-0.2 ng/ml; E2: 1.6+/-0.2 pg/ml) than in 3-wave goats (P4: 2.0+/-0.5 ng/ml, P < 0.05; E2: 4.4+/-0.9 pg/ml, P < 0.05). Wave 2 emerged earlier in 4-wave (Day 4.2+/-0.3) than in 3-wave goats (Day 7.3+/-0.3, P < 0.05). Three out of six of the progesterone-treated goats had short cycles (mean 8.0+/-0.0 days) and ovulated from Wave 1. The other three goats had shorter cycles (mean 18.3+/-0.3 days) than the control group (20.0+/-0.2 days; P < 0.05), although they were within the normal range of control cycles (shortened cycles). In the three treated goats with shortened cycles (two with four waves, one with three waves), mean progesterone concentrations between Days I and 5 were higher (4.7+/-0.6 ng/ml) than in the 3-wave control goats. In these goats, Wave 2 emerged at Day 4.3+/-0.3, similar to the time observed in 4-wave goats but earlier (P < or = 0.05) than in 3-wave control goats. Overall results confirm a relationship between the progesterone levels and the follicular wave turnover during the early luteal phase in the goat. Higher progesterone concentrations may accelerate follicular turnover probably by an early decline of the negative feedback action of the largest follicle of Wave 1. This is followed by an early emergence of Wave 2.  相似文献   

20.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号