首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The signaling mechanisms leading to phorbol ester myristate (PMA)-induced differentiation of HL-60 cells to the macrophagelike phenotype were investigated by using different protein kinase inhibitors. The protein kinase C inhibitor Ro 31-8220 specifically blocks PMA-induced differentiation, activation of the p42/44ERK- and p38RK-MAP kinase cascades and Hsp27-phosphorylation in HL-60 cells. Because Ro 31-8220 does not inhibit activation of the MAP kinase cascades by protein kinase C (PKC)-independent signals such as epidermal growth factor (EGF), heat shock, or anisomycin in these cells, only PMA-induced activation of the MAP kinases can be downstream of PKC. The MEK1 inhibitor PD 098059 and the p38RK inhibitor SB 203580 also were used to analyze whether the PMA-induced PKC-dependent activation of MAP kinases is involved in the differentiation process. Under certain conditions, PD 098059 can completely block the PMA-induced activation of the p42ERK as monitored by imunoprecipitation kinase assay by using the substrate myelin basic protein. SB 203580 specifically inhibits activation of p38RK as judged by MAPKAP kinase 2 activity against the substrate Hsp27 and also blocks Hsp27 phosphorylation in the cells. In contrast, neither PD 098059 nor SB 203580 nor both inhibitors together prevent PMA-induced differentiation of the HL-60 cells to the macrophagelike phenotype. The results suggest the existence of a diversification of PMA-induced signaling in HL-60 cells downstream of PKC, leading to activation of MAP kinases that are not essential for differentiation and to phosphorylation of other, so far unidentified, targets responsible for differentiation. J. Cell. Physiol. 173:310–318, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Tumour necrosis factor (TNF) is a pleiotropic cytokine, the activities of which include effects on gene expression, cell growth and cell death. The biological signalling mechanisms which are responsible for these TNF effects remain largely unknown. Here we demonstrate that the stress-responsive p38 mitogen-activated protein (MAP) kinase is involved in TNF-induced cytokine expression. TNF Treatment of cell activated the p38 MAP kinase pathway, as revealed by increased phosphorylation of p38 MAP kinase itself, activation of the substrate protein MAPKAP kinase-2, and culminating in the phosphorylation of the heat shock protein 27 (hsp27). Pretreatment of cells with the highly specific p38 MAP kinase inhibitor SB203580 completely blocked this TNF-induced activation of MAPKAP kinase-2 and hsp27 phosphorylation. Under the same conditions, SB203580 also completely inhibited TNF-induced synthesis of interleukin (IL)-6 and expression of a reporter gene that was driven by a minimal promoter containing two NF-Kappa B elements. However, neither TNF-induced DNA binding of TNF-Kappa B nor TNF-induced phosphorylation of its subunits was modulated by SB203580, suggesting that NF-Kappa B is not a direct target for the p38 MAP kinase pathway. Interestingly, TNF-induced cytotoxicity was not affected by SB203580, indicating that p38 MAP kinase might be an interesting target to interfere selectively with TNF-induced gene activation.  相似文献   

3.
We previously showed that the aggregated form of Hsp27 in cultured cells becomes dissociated as a result of phosphorylation with various types of stress. In order to clarify the signal transduction cascade involved, the effects of various inhibitors of protein kinases and dithiothreitol on the dissociation of Hsp27 were here examined by means of an immunoassay after fractionation of cell extracts by sucrose density gradient centrifugation. The dissociation of Hsp27 induced by exposure of U251 MG human glioma cells to metals (NaAsO2 and CdCl2), hypertonic stress (sorbitol and NaCl), or anisomycin, an activator of p38 mitogen–activated protein (MAP) kinase, was completely suppressed by the presence of SB 203580 or PD 169316, inhibitors of p38 MAP kinase, but not by PD 98059 and Uo 126, inhibitors of MAP kinase kinase (MEK), nor by staurosporine, Go 6983, and bisindolylmaleimide I, inhibitors of protein kinase C. Phorbol ester (PMA)–induced dissociation of Hsp27 was completely suppressed by staurosporine, Go 6983, or bisindolylmaleimide I and partially suppressed by SB 203580, or PD 169316 but not by PD 98059 or Uo 126, indicating mediation by 2 cascades. The presence of 1 mM dithiothreitol in the culture medium during exposure to chemicals suppressed the dissociation of Hsp27 induced by arsenite and CdCl2 but not by other chemicals. These results suggest that the phosphorylation of Hsp27 is catalyzed by 2 protein kinases, p38 MAP kinase–activated protein (MAPKAP) kinase- 2/3 and protein kinase C. In addition, metal-induced signals are sensitive to reducing power.  相似文献   

4.
Chevalier D  Allen BG 《Biochemistry》2000,39(20):6145-6156
Hsp27 kinase activities were studied in adult rat ventricular myocytes following sequential chromatography on Mono Q and Mono S. A basal level of activity was present following cell isolation. FPLC on Mono Q revealed three peaks of activity, peaks 'a', 'b', and 'c'. A fourth peak, 'd', was detected upon subsequent chromatography of the Mono Q flow-through on Mono S. Immunoblotting revealed that peaks 'a', 'b', and 'c' contained predominantly a 49 kDa form of MAPKAP kinase-2. Peak 'd' contained a 43 kDa form. 'In-gel' kinase assays using hsp27 indicated both forms of MAPKAP kinase-2 were active. No other bands of hsp27 kinase activity were detected. Both forms of hsp27 kinase immunoprecipitated with a MAPKAP kinase-2 antibody and have therefore been named MAPKAP kinase-2alpha (p49) and MAPKAP kinase-2beta (p43). MAPKAP kinase-2beta chromatographed on Superose 12 as a 60.7 kDa monomer whereas the behavior of MAPKAP kinase-2alpha suggested both a 65.7 kDa monomer and higher molecular mass complexes. Both activities phosphorylated hsp27 on serine residues, and two-dimensional phosphopeptide mapping indicated the same sites were phosphorylated. A tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated both MAPKAP kinase-2alpha and MAPKAP kinase-2beta activity. Inhibition of MEK activation with PD 98059 or p38alpha/beta MAP kinase activity with SB203580 blocked activation by PMA. However, whereas PD 98059 inhibited only the PMA-stimulated activation, SB203580 inhibited both PMA-stimulated and basal hsp27 phosphorylation. These data demonstrate the presence of two forms of MAPKAP kinase-2 in adult ventricular myocytes. Both forms are activated indirectly by the ERK MAP kinase pathway and directly by p38 MAP kinase but independently regulated.  相似文献   

5.
Two novel, modified thymidine nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), trigger reactive oxygen species (ROS) generation and DNA damage and thereby induce caspase-mediated apoptosis in human HL-60 cells; however, the mechanism leading to caspase activation and apoptotic cell death remains unclear. Therefore, we investigated the signaling molecules involved in nucleoside derivative-induced caspase activation and apoptosis in HL-60 cells. PhSe-T/MeSe-T treatment activated two mitogen-activated protein kinases (MAPKs), extracellular-receptor kinase (ERK) and p38, and induced the phosphorylation of two downstream targets of p38, ATF-2 and MAPKAPK2. In addition, the selective p38 inhibitor SB203580 suppressed PhSe-T/MeSe-T-induced apoptosis and activation of caspase-3, -9, -8, and -2, whereas the jun amino-terminal kinase (JNK) inhibitor SP600125 and the ERK inhibitor PD98059 had no effect. SB203580 and an ROS scavenger, tiron, inhibited PhSe-T/MeSe-T-induced histone H2AX phosphorylation, which is a DNA damage marker. Moreover, tiron inhibited PhSe-T/MeSe-T-induced phosphorylation of p38 and enhanced p38 MAP kinase activity, indicating a role for ROS in PhSe-T/MeSe-T-induced p38 activation. Taken together, our results suggest that PhSe-T/MeSe-T-induced apoptosis is mediated by the p38 pathway and that p38 serves as a link between ROS generation and DNA damage/caspase activation in HL-60 cells.  相似文献   

6.
Receptor activator of nuclear factor-kappaB (RANK) plays a central role in the regulation of osteoclast differentiation and activation, but the mechanisms underlying its expression remain to be elucidated. In the present study we showed that expression of RANK was strongly induced by phorbol-12-myristate-13-acetate (PMA) during monocyte differentiation of U937 cells, and was enhanced by concomitant treatment with vitamin D3. Induction was dramatically inhibited by protein kinase C (PKC) inhibitors such as rottlerin and G?6983, but not by G?6976. Interestingly, rottlerin, a selective inhibitor of PKCdelta, reduced PMA-induced RANK expression while having no effect on CD11b expression. However overexpression of wild type PKCdelta, or a kinase-inactive mutant, did not affect PMA-induction of RANK, suggesting that rottlerin inhibits PMA-induced expression of RANK via a PKCdelta-independent mechanism. Rottlerin also inhibited PMA-induced phosphorylation of p38 mitogen-activated protein kinase (p38MAPK), and the p38 MAPK inhibitor SB203580 inhibited induction of RANK. Rottlerin and SB203580 also substantially reduced RANK mRNA expression in mouse BMM cells stimulated with macrophage colony stimulating factor (M-CSF). Together, these results demonstrate that expression of RANK is dependent upon a rottlerin-sensitive and p38MAPK-dependent pathway during monocyte differentiation.  相似文献   

7.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   

8.
Angiotensin II (ANG II) is a multifunctional hormone that exerts potent vasoconstrictor and hypertrophic effects on vascular smooth muscle. Here, we demonstrate that the p38 mitogen-activated protein (MAP) kinase pathway is involved in ANG II-induced vascular contraction. Addition of ANG II to rat aortic smooth muscle cells (SMC) caused a rapid and transient increase of p38 activity through activation of the AT(1) receptor subtype. This response to ANG II was strongly attenuated by pretreating cells with antioxidants and diphenylene iodonium and was mimicked by exposure of cells to H(2)O(2). Stimulation of p38 by ANG II resulted in the enzymatic activation of MAP kinase-activated protein (MAPKAP) kinase-2 and the phosphorylation of heat shock protein 27 (HSP27) in aortic SMC. Pretreatment of cells with the specific p38 MAP kinase inhibitor SB-203580 completely blocked the ANG II-dependent activation of MAPKAP kinase-2 and phosphorylation of HSP27. ANG II also caused a robust activation of MAPKAP kinase-2 in the intact rat aorta. Incubation with SB-203580 significantly decreased the potency of ANG II to induce contraction of rat aortic rings and depressed the maximal hormone response. These results suggest that the p38 MAP kinase pathway selectively modulates the vasoconstrictor action of ANG II in vascular smooth muscle.  相似文献   

9.
The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.  相似文献   

10.
Akt activation requires phosphorylation of Thr(308) and Ser(473) by 3-phosphoinositide-dependent kinase-1 and 2 (PDK1 and PDK2), respectively. While PDK1 has been cloned and sequenced, PDK2 has yet to be identified. The present study shows that phosphatidylinositol 3-kinase-dependent p38 kinase activation regulates Akt phosphorylation and activity in human neutrophils. Inhibition of p38 kinase activity with SB203580 inhibited Akt Ser(473) phosphorylation following neutrophil stimulation with formyl-methionyl-leucyl-phenylalanine, FcgammaR cross-linking, or phosphatidylinositol 3,4,5-trisphosphate. Concentration inhibition studies showed that Ser(473) phosphorylation was inhibited by 0.3 microm SB203580, while inhibition of Thr(308) phosphorylation required 10 microm SB203580. Transient transfection of HEK293 cells with adenoviruses containing constitutively active MKK3 or MKK6 resulted in activation of both p38 kinase and Akt. Immunoprecipitation and glutathione S-transferase (GST) pull-down studies showed that Akt was associated with p38 kinase, MK2, and Hsp27 in neutrophils, and Hsp27 dissociated from the complex upon activation. Active recombinant MK2 phosphorylated recombinant Akt and Akt in anti-Akt, anti-MK2, anti-p38, and anti-Hsp27 immunoprecipitates, and this was inhibited by an MK2 inhibitory peptide. We conclude that Akt exists in a signaling complex containing p38 kinase, MK2, and Hsp27 and that p38-dependent MK2 activation functions as PDK2 in human neutrophils.  相似文献   

11.
The receptor activator of NF-kappaB ligand (RANKL) induces osteoclast differentiation from bone marrow cells in the presence of macrophage colony-stimulating factor. We found that treatment of bone marrow cells with SB203580 inhibited osteoclast differentiation via inhibition of the RANKL-mediated signaling pathway. To elucidate the role of p38 mitogen-activated protein (MAP) kinase pathway in osteoclastogenesis, we employed RAW264 cells which could differentiate into osteoclast-like cells following treatment with RANKL. In a dose-dependent manner, SB203580 but not PD98059, inhibited RANKL-induced differentiation. Among three MAP kinase families tested, this inhibition profile coincided only with the activation of p38 MAP kinase. Expression in RAW264 cells of the dominant negative form of either p38alpha MAP kinase or MAP kinase kinase (MKK) 6 significantly inhibited RANKL-induced differentiation of the cells. These results indicate that activation of the p38 MAP kinase pathway plays an important role in RANKL-induced osteoclast differentiation of precursor bone marrow cells.  相似文献   

12.
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.  相似文献   

13.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

14.
15.
There are several reports describing participation of small heat shock proteins (sHsps) in cellular protein quality control. In this study, we estimated the endoplasmic reticulum (ER) stress-induced response of Hsp27 and alphaB-crystallin in mammalian cells. Treatment targeting the ER with tunicamycin or thapsigargin induced the phosphorylation of Hsp27 but not of alphaB-crystallin in U373 MG cells, increase being observed after 2-10 h and decline at 24 h. Similar phosphorylation of Hsp27 by ER stress was also observed with U251 MG and HeLa but not in COS cells and could be blocked using SB203580, an inhibitor of p38 MAP kinase. Other protein kinase inhibitors, like G?6983, PD98059, and SP600125, inhibitors of protein kinase C (PKC), p44/42 MAP kinase, and JNK, respectively, were without major influence. Prolonged treatment with tunicamycin but not thapsigargin for 48 h caused the second induction of the phosphorylation of Hsp27 in U251 MG cells. Under these conditions, the intense perinuclear staining of Hsp27, with some features of aggresomes, was observed in 10%-20% of the cells.  相似文献   

16.
17.
18.
Pyridinyl imidazole inhibitors, particularly SB203580, have been widely used to elucidate the roles of p38 mitogen-activated protein (MAP) kinase (p38/HOG/SAPKII) in a wide array of biological systems. Studies by this group and others have shown that SB203580 can have antiproliferative activity on cytokine-activated lymphocytes. However, we recently reported that the antiproliferative effects of SB203580 were unrelated to p38 MAP kinase activity. This present study now shows that SB203580 can inhibit the key cell cycle event of retinoblastoma protein phosphorylation in interleukin-2-stimulated T cells. Studies on the proximal regulator of this event, the phosphatidylinositol 3-kinase/protein kinase B (PKB)(Akt/Rac) kinase pathway, showed that SB203580 blocked the phosphorylation and activation of PKB by inhibiting the PKB kinase, phosphoinositide-dependent protein kinase 1. The concentrations of SB203580 required to block PKB phosphorylation (IC(50) 3-5 microM) are only approximately 10-fold higher than those required to inhibit p38 MAP kinase (IC(50) 0.3-0.5 microM). These data define a new activity for this drug and would suggest that extreme caution should be taken when interpreting data where SB203580 has been used at concentrations above 1-2 microM.  相似文献   

19.
SB 203580 has been widely used to specifically shut down the p38 MAP kinase-dependent pathway, although it is capable of inducing c-Raf kinase activity in cells. The present study demonstrates that SB 203580 activates members of the ERK cascade, c-Raf, MEK, and ERK, in human monocytic THP-1 cells. The activation of these kinases was sustained for at least 24 h after SB 203580 treatment and was also observed in U937 cells, suggesting that c-Raf efficiently transduces the signal even in the presence of the inhibitor in these cells. However, the expression of ERK cascade-dependent genes, such as c-fos and IL-1beta, was extremely limited. Analysis of the cellular distribution of ERK in SB 203580-treated cells indicated that nuclear translocation of phosphorylated ERK was impaired. Also, nuclear translocation of ERK induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) was inhibited by SB 239063, which does not associate with c-Raf and is highly selective for p38 MAP kinase. In addition, the forced expression of the dominant negative mutant of p38 MAP kinase suppressed serum responsive element-dependent transactivation induced by TPA. These results suggest that the steady-state level of p38 MAP kinase activity modulates ERK signaling.  相似文献   

20.
It is generally recognized that osteoporosis is a common complication of patients with glucocorticoid excess and that glucocorticoid receptor is associated with heat shock protein (HSP) 70 and HSP90 in a heterocomplex. In the present study, we investigated whether glucocorticoid induces HSP27, HSP70, and HSP90 in osteoblast-like MC3T3-E1 cells. Dexamethasone time-dependently increased the levels of HSP27, while having no effect on the levels of HSP70 or HSP90. The effect of dexamethasone was dose-dependent in the range between 0.1 nM and 0.1 microM. Dexamethasone induced an increase of the levels of mRNA for HSP27. Dexamethasone induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, suppressed the HSP27 accumulation by dexamethasone. In addition, SB203580 reduced the dexamethasone-stimulated increase of the mRNA levels for HSP27. The dexamethasone-induced phosphorylation of p38 MAP kinase was reduced by SB203580. These results strongly suggest that glucocorticoid stimulates the induction of neither HSP70 nor HSP90, but HSP27 in osteoblasts, and that p38 MAP kinase is involved in the induction of HSP27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号