首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolbachia-infected Ostrinia scapulalis (Lepidoptera: Crambidae) females generate all-female or nearly all-female broods. Curing the infection by tetracycline treatment during larval stages results in the generation of all-male broods in the next generation. Here we show that sexually mosaic offspring are produced by Wolbachia-infected females treated with tetracycline at the adult stage. The sexual mosaics had wings that were composed of distinctive female and male sectors. Besides wings, the sexually dimorphic mid tibiae displayed an intermediate morphology in some of the mosaics. Many of the mosaic individuals had an abnormal structure of the external genitalia as well, a combination of the male uncus and the female ovipositor. We assume that Wolbachia has a feminizing effect on O. scapulalis genetic males and, hence, incomplete curing of the Wolbachia infection results in the generation of sexually mosaic individuals.  相似文献   

2.
Maternally inherited, cellular endosymbionts can enhance their fitness by biasing host sex ratio in favor of females. Male killing (MK), an extreme form of sex-ratio manipulation, is selectively advantageous, if the death of males results in increased microbe transmission through female siblings. In live-bearing hosts, females typically produce more embryos than are brought to term, and reproductive compensation through maternal resource reallocation from dead male embryos to female siblings provides a direct, physiological mechanism that could increase the number of daughters born to infected females, thereby promoting MK endosymbiont spread. In this study, a Wolbachia-infected line and an uninfected line of the viviparous pseudoscorpion, Cordylochernes scorpioides were genetically homogenized for nuclear DNA by repeated backcrossing of the infected line with the uninfected, laboratory population. Photomicroscopy of early-stage embryos demonstrated that female C. scorpioides invariably produced an excess of embryos, with Wolbachia-infected females producing as many early-stage embryos as uninfected female controls. However, Wolbachia-infected females that successfully carried broods to term gave birth to significantly fewer offspring, indicating that the extreme female bias characteristic of their broods results from the killing rather than the feminization of male embryos. Infected females that carried broods to term gave birth to significantly larger nymphs and did produce 10% more female offspring than uninfected females. However, the slight transmission advantage that the MK Wolbachia accrued from this reproductive compensation appears to be heavily outweighed by the high rate of spontaneous brood abortion suffered by infected females.  相似文献   

3.
Females infected with parthenogenesis-inducing Wolbachia bacteria can be cured from their infection by antibiotic treatment, resulting in male production. In most cases, however, these males are either sexually not fully functional, or infected females have lost the ability to reproduce sexually. We studied the decay of sexual function in males and females of the parasitoid Leptopilina clavipes. In western Europe, infected and uninfected populations occur allopatrically, allowing for an investigation of both male and female sexual function. This was made by comparing females and males induced from different parthenogenetic populations with those from naturally occurring uninfected populations. Our results indicate that although males show a decay of sexual function, they are still able to fertilize uninfected females. Infected females, however, do not fertilize their eggs after mating with males from uninfected populations. The absence of genomic incompatibilities suggests that these effects are due to the difference in mode of reproduction.  相似文献   

4.
Maternally inherited endosymbiotic bacteria of the genus Wolbachia induce various kinds of reproductive alterations in their arthropod hosts. In a Wolbachia-infected strain of the adzuki bean borer moth, Ostrinia scapulalis (Lepidoptera: Crambidae), males selectively die during larval development, while females selectively die when Wolbachia are eliminated by antibiotic treatment. We found that naturally occurring Wolbachia in the congener O. furnacalis caused sex-specific lethality similar to that in O. scapulalis. Cytogenetic analyses throughout the entire larval development clarified that the death of males (when infected) and females (when cured) took place mainly during early larval stages. However, some individuals also died after complete formation of larval bodies but before egg hatching, or at late larval stages, even in the penultimate instar. Although the specific timing was highly variable, death of males and females occurred before pupation without exception. The potential association of sex-specific lethality with the sex determination mechanism was also examined and is discussed.  相似文献   

5.
研究了通过共享同一寄主卵,短管赤眼蜂Trichogramma pretiosum体内共生的Wolbachia被水平传递到拟澳洲赤眼蜂T. confusum体内后,Wolbachia对新宿主拟澳洲赤眼蜂的影响。结果表明: Wolbachia的侵染能使拟澳洲赤眼蜂进行不完全的产雌孤雌生殖,增加拟澳洲赤眼蜂子代雌性比例,但却导致了雌蜂寿命缩短和繁殖力降低的生理损失。Wolbachia感染的当代处女蜂及其建立的种群连续5代(F1~F5),其子代雌蜂百分率分别为79.17%、76.60%、68.66%、72.58%、68.15%和64.06%,基本上呈现出逐代降低的趋势,并越来越接近对照的63.85%。处女蜂及F1~F5代雌蜂的平均寿命分别为4.33、5.50、5.60、6.68、7.32和7.50天,而未感染交配雌蜂寿命为7.59 天;处女蜂及F1~F5代雌蜂平均产卵量分别为11.33、70.00、86.41、93.90、102.92和124.38粒/雌,除F5代外,均显著低于未感染交配雌蜂的产卵量134.81粒/雌。用四臂嗅觉仪测定了Wolbachia新宿主拟澳洲赤眼蜂对寄主小菜蛾的嗅觉反应,结果表明Wolbachia的侵染具轻微干扰拟澳洲赤眼蜂嗅觉反应的负面影响。未感染Wolbachia的拟澳洲赤眼蜂及Wolbachia供体短管赤眼蜂对寄主小菜蛾具较强的嗅觉反应,其雌蜂在小菜蛾腹部鳞片正己烷提取液和小菜蛾卵表正己烷提取液处理区内滞留时间显著或极显著长于对照区。而感染Wolbachia的拟澳洲赤眼蜂F2代和F3代雌蜂,尽管在小菜蛾腹部鳞片正己烷提取液处理区内滞留时间比对照区长,但没有达到显著水平;其F2代雌蜂在小菜蛾卵表正己烷提取液处理区内滞留时间与对照区相比,也没有达到显著水平。随Wolbachia在拟澳洲赤眼蜂种群中垂直感染代数的增加,拟澳洲赤眼蜂对寄主小菜蛾的嗅觉反应恢复正常,在Wolbachia感染后的 F4~F6代,雌蜂在两种提取液处理区内的滞留时间均显著或极显著长于对照区。  相似文献   

6.
Many maternally inherited endosymbionts manipulate their host's reproduction in various ways to enhance their own fitness. One such mechanism is male killing (MK), in which sons of infected mothers are killed by the endosymbiont during development. Several hypotheses have been proposed to explain the advantages of MK, including resource reallocation from sons to daughters of infected females, avoidance of inbreeding by infected females, and, if transmission is not purely maternal, the facilitation of horizontal transmission to uninfected females. We tested these hypotheses in Drosophila innubila, a mycophagous species infected with MK Wolbachia. There was no evidence of horizontal transmission in the wild and no evidence Wolbachia reduced levels of inbreeding. Resource reallocation does appear to be operative, as Wolbachia-infected females are slightly larger, on average, than uninfected females, although the selective advantage of larger size is insufficient to account for the frequency of infection in natural populations. Wolbachia-infected females from the wild-although not those from the laboratory-were more fecund than uninfected females. Experimental studies revealed that Wolbachia can boost the fecundity of nutrient-deprived flies and reduce the adverse effect of RNA virus infection. Thus, this MK endosymbiont can provide direct, MK-independent fitness benefits to infected female hosts in addition to possible benefits mediated via MK.  相似文献   

7.
Presgraves DC 《Genetics》2000,154(2):771-776
Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm.  相似文献   

8.
9.
Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. Some populations of the parasitoid wasp Asobara japonica are infected with Wolbachia and reproduce parthenogenetically, while other populations are not infected and reproduce sexually. Wolbachia-infected A. japonica females regularly produce small numbers of male offspring. Because all females in the field are infected and infected females are not capable of sexual reproduction, male production seems to be maladaptive. We investigated why these females nevertheless produce males. We tested three hypotheses: high rearing temperatures could result in higher offspring sex ratios (more males), low Wolbachia titer of the mother could lead to higher offspring sex ratios and/or the Wolbachia infection is of relatively recent origin and not enough time has passed to allow complete coadaptation between Wolbachia and host. In all, 33% of the Wolbachia-infected females produced males and 56% of these males were also infected with Wolbachia. Neither offspring sex ratio nor male infection frequency was significantly affected by rearing temperature or Wolbachia concentration of the mother. The mitochondrial DNA sequence of one of the uninfected populations was identical to that of two of the infected populations. Therefore, the initial Wolbachia infection of A. japonica must have occurred recently. Mitochondrial sequence variation among the infected populations suggests that the spread of Wolbachia through the host populations involved horizontal transmission. We conclude that the occasional male production by Wolbachia-infected females is most likely a maladaptive side effect of incomplete coevolution between symbiont and host in this relatively young infection.  相似文献   

10.
Hong XY  Gotoh T  Nagata T 《Heredity》2002,88(3):190-196
The vertical transmission of Wolbachia in two species of spider mite was investigated and compared. One species, Tetranychus kanzawai Kishida, was infected with a modification negative strain of Wolbachia while the other species, Panonychus mori Yokoyama, was infected with a modification positive strain. The infection showed perfect maternal transmission in the laboratory population of T. kanzawai in which Wolbachia-infected females produced infected offspring regardless of whether they mated with infected or uninfected males, and uninfected females produced Wolbachia-free progenies without regard to the infection status of their mating partners. In artificial P. mori populations initiated with 50% infected and 50% uninfected female adults, the infection frequencies among progenies increased with each generation, reaching 100% at the sixth generation in the Sendai population and after the sixth generation in the Toyama population. In another experiment, in which an artificial T. kanzawai population was composed of 50% infected and 50% uninfected female adults, the infection frequency in progeny populations increased very slowly, reaching 62.5% at the 15th generation. The difference in infection frequency in the two spider mites may be due to the different strains of Wolbachia.  相似文献   

11.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

12.
Abstract.— Until now, only two Wolbachia-mediated cytoplasmic incompatibility (CI) types have been described in haplodiploid species, the first in Nasonia (Insect) and the second in Tetranychus (Acari). They both induce a malebiased sex ratio in the incompatible cross. In Nasonia, CI does not reduce fertility since incompatible eggs develop as haploid males, whereas in Tetranychus CI leads to a partial mortality of incompatible eggs, thus reducing the fertility of females. Here, we study Wolbachia infection in a Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae). A survey of Wolbachia infection shows that all natural populations tested are totally infected. Crosses between infected males and cured females show complete incompatibility: almost no females are produced. Moreover, incompatible eggs die early during their development, unlike Nasonia. This early death allows the parasitized Drosophila larva to achieve its development and to emerge. Thus, uninfected females crossed with infected males have reduced offspring production consisting only of males. Evidence of this CI type in insects demonstrates that the difference in CI types of Nasonia and Tetranychus is not due to specific factors of insects or acari. Using theoretical models, we compare the invasion processes of different strategies of Wolbachia: CI in diploid species, the two CI types in haplodiploid species, and parthenogenesis (the classical effect in haplodiploid species). Models show that CI in haplodiploid species is less efficient than in diploid ones. However, the Leptopilina type is advantageous compared to the Nasonia type. Parthenogenesis may be more or less advantageous, depending on the infection cost and on the proportion of fertilized eggs. Finally, we can propose different processes of Wolbachia strategy evolution in haplodiploid species from Nasonia CI type to Leptopilina CI type or parthenogenesis.  相似文献   

13.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

14.
Wolbachia与昆虫精卵细胞质不亲和   总被引:1,自引:0,他引:1  
Wolbachia是广泛分布在昆虫体内的一类共生菌,能通过多种机制调节宿主的生殖方式,包括诱导宿主精卵细胞质不亲和(CI)、孤雌生殖、雌性化、杀雄等,其中细胞质不亲和为最普遍的表型,即感染Wolbachia的雄性和未感染或感染不同品系Wolbachia的雌性宿主交配后,受精卵不能正常发育,在胚胎期死亡。多数CI胚胎在第1次分裂时,来自父本的染色质浓缩缺陷,导致父本遗传物质无法正常分配到子细胞中,因而引起胚胎死亡。守门员模型认为,产生CI可能需要有两种因子,其中之一使得精子发生修饰改变,导致受精后雄性原核发育滞后。第2种因子可能与Wolbachia的原噬菌体有关,在胚胎发育后期导致胚胎死亡。近期的研究已发现,在Wolbachia感染的宿主中,一些与生殖细胞发生和繁殖相关基因的表达发生了显著改变,Wolbachia可能因此对宿主的生殖产生重大影响,进而导致CI的产生。本文主要综述了CI的细胞学表型、解释CI的模型及其分子机理,向读者展示一个小小的细菌是如何通过精妙的策略影响昆虫宿主的繁殖,从而实现其自身的生存和传播的。  相似文献   

15.
Wolbachia are cytoplasmically transmitted bacteria that infect several species of mites. In the two-spotted spider mite Tetranychus urticae Koch this symbiont can induce reproductive incompatibility. Wolbachia-induced reproductive incompatibility is observed in crosses between Wolbachia-infected (W) males and uninfected (U) females. This incompatibility is expressed in F1 broods as male-biased sex ratios, an effect called cytoplasmic incompatibility (CI). However, in the two-spotted spider mite, Wolbachia-induced reproductive incompatibility may extend to the F2: broods of virgin F1 females from U×W crosses sometimes suffer increased mortality rates. This F2 effect is called hybrid breakdown (HB). Several isofemale lines derived from mites collected from rose and cucumber plants had been previously tested for CI. Here we report on the results obtained for HB.  相似文献   

16.
James AC  Dean MD  McMahon ME  Ballard JW 《Heredity》2002,88(3):182-189
The bacterial symbiont Wolbachia can cause cytoplasmic incompatibility in Drosophila simulans flies: if an infected male mates with an uninfected female, or a female with a different strain of Wolbachia, there can be a dramatic reduction in the number of viable eggs produced. Here we explore the dynamics associated with double and single Wolbachia infections in New Caledonia. Doubly infected females were compatible with all males in the population, explaining the high proportion of doubly infected flies. In this study, males that carry only wHa or wNo infections showed reduced incompatibility when mated to uninfected females, compared with previous reports. These data suggest that either the DNA of these bacterial isolates have diverged from those previously collected, or the genetic background of the host has lead to a reduction in the phenotype of incompatibility. Mitochondrial sequence polymorphism at two sites within the host genome was assayed to investigate population structure related to infection types. There was no correlation between sequence polymorphism and infection type suggesting that double infections are the stable type, with singly infected and uninfected flies arising from stochastic segregation of bacterial strains. Finally, we discuss the nomenclature of Wolbachia strain designation.  相似文献   

17.
The mosquito Aedes pseudoscutellaris (Theobald), a member of the Aedes (Stegomyia) scutellaris complex (Diptera: Culicidae), is an important vector of subperiodic Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae), causing human lymphatic filariasis, on South Pacific islands. Maternal inheritance of filarial susceptibility in the complex has previously been asserted, and larval tetracycline treatment reduced susceptibility; the maternally inherited Wolbachia in these mosquitoes were suggested to be responsible. To investigate the relationship of these two factors, we eliminated Wolbachia from a strain of Ae. pseudoscutellaris by tetracycline treatment, and tested filarial susceptibility of the adult female mosquitoes using Brugia pahangi (Edeson & Buckley). Filarial susceptibility was not significantly different in Wolbachia-free and infected lines of Ae. pseudoscutellaris, suggesting that the Wolbachia in these mosquitoes do not influence vector competence. Crosses between Wolbachia-infected males and uninfected females of Ae. pseudoscutellaris showed cytoplasmic incompatibility (CI), i.e. no eggs hatched, unaffected by larval crowding or restricted nutrient availability, whereas these factors are known to affect CI in Drosophila simulans. Reciprocal crosses between Ae. pseudoscutellaris and Ae. katherinensis Woodhill produced no progeny, even when both parents were Wolbachia-free, suggesting that nuclear factors are responsible for this interspecific sterility.  相似文献   

18.
Wolbachia bacteria are transmitted from mother to offspring via the cytoplasm of the egg. When mated to males infected with Wolbachia bacteria, uninfected females produce unviable offspring, a phenomenon called cytoplasmic incompatibility (CI). Current theory predicts that ‘sterilization’ of uninfected females by infected males confers a fitness advantage to Wolbachia in infected females. When the infection is above a threshold frequency in a panmictic population, CI reduces the fitness of uninfected females below that of infected females and, consequently, the proportion of infected hosts increases. CI is a mechanism that benefits the bacteria but, apparently, not the host. The host could benefit from avoiding incompatible mates. Parasite load and disease resistance are known to be involved in mate choice. Can Wolbachia also be implicated in reproductive behaviour? We used the two‐spotted spider mite – Wolbachia symbiosis to address this question. Our results suggest that uninfected females preferably mate to uninfected males while infected females aggregate their offspring, thereby promoting sib mating. Our data agrees with other results that hosts of Wolbachia do not necessarily behave as innocent bystanders – host mechanisms that avoid CI can evolve.  相似文献   

19.
The endocellular microbe Wolbachia pipientis infects a wide variety of invertebrate species, in which its presence is closely linked to a form of reproductive failure termed cytoplasmic incompatibility (CI). CI renders infected males unable to father offspring when mated to uninfected females. Because CI can dramatically affect fitness in natural populations, mechanisms that abate CI can have equally large impacts on fitness. We have discovered that repeated copulation by Wolbachia-infected male Drosophila simulans significantly diminishes CI. Repeated copulation does not prevent Wolbachia from populating developing spermatids, but may reduce the time during spermatogenesis when Wolbachia can express CI. This restoration of fertility in premated infected males could have important implications for Wolbachia transmission and persistence in nature and for its exploitation as an agent of biological pest control.  相似文献   

20.
The endosymbiotic bacterium Wolbachia pipientis manipulates host reproduction by rendering infected males reproductively incompatible with uninfected females (cytoplasmic incompatibility; CI). CI is believed to occur as a result of Wolbachia-induced modifications to sperm during maturation, which prevent infected sperm from initiating successful zygote development when fertilizing uninfected females' eggs. However, the mechanism by which CI occurs has been little studied outside the genus Drosophila. Here, we show that in the sperm heteromorphic Mediterranean flour moth, Ephestia kuehniella, infected males transfer fewer fertile sperm at mating than uninfected males. In contrast, non-fertile apyrene sperm are not affected. This indicates that Wolbachia may only affect fertile sperm production and highlights the potential of the Lepidoptera as a model for examining the mechanism by which Wolbachia induces CI in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号