首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M–2 day–1 and 100–200 mg P m–1 day–1. Average external loading during this period was about 350 mg N m–2 day–1 and 5 mg P m–2 day–1, respectively.Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m–2 day–1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.  相似文献   

2.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

3.
1. Phosphorus (P) concentrations in the water column of lakes and wetlands are crucial to their trophic status and ecosystem function, but quantifying the processes controlling P concentrations in the field has been a difficult task. A site‐based, in‐lake method is described to partition major field processes controlling P concentration in a shallow lake. 2. It involves (i) in‐lake deployment of a suite of chambers that isolate in‐chamber activities from atmospheric sources, groundwater input and horizontal water movement; (ii) monitoring P concentrations and relevant water properties inside and outside the isolation chambers; and (iii) calculating the contribution of each individual process by simple mathematical deduction, so as to differentiate the contributions from the different sources. 3. The method was applied at nearshore and offshore sites in a seasonal, groundwater‐fed shallow lake on the Swan Coastal Plain, south‐western Australia, during winter refilling. Primary (atmospheric and groundwater) and secondary processes (e.g. circulation and sediment‐water interactions) were partitioned and quantified in terms of their contributions to water column P [as total P (TP; μg m?2 day?1)]. 4. Atmospheric and groundwater inputs were the two main processes contributing P loadings (1233 and 1010 μg P m?2 day?1), but their influence appeared restricted to the near‐shore site. The estimated influence on TP by mixing‐circulation, atmosphere and groundwater were 2.4–25 times higher near the lake margin as compared with the offshore site. The circulation and sediment‐water interactions decreased water column P at the marginal site, but increased P offshore because of subsequent P release from sediment and a concurrent increase in pH. 5. Results are consistent with data reported elsewhere, and the factors that could affect the accuracy of partitioning are discussed.  相似文献   

4.
1. In extremely acid mining lakes, benthic filamentous green algae (Zygnemataceae, Chlorophyta) thrive as effective competitors for limited carbon (C). These algae could supply C for microbial‐mediated benthic alkalinity generation. However, biomass, productivity and impact of the acidobiontic filamentous green algae at pH ≤3 have not previously been determined. 2. Periphytic filamentous green algae was mapped by harvesting their biomass from 85 1 × 1 m quadrats in mining lake Grünewalder Lauch. Zygogonium ericetorum colonised water depths between 1.6 and 10.5 m covering 88% of total area. Biomass peaked at 5–6 m depth. Total Zygogonium biomass amounted to 72.2 t dry weight for the whole lake (0.94 km2), which corresponds to 16.1 t C and the accumulation of primary production from 2.2 years. 3. Growth of Zygogonium is moderately N, C and extremely P deficient, and seriously stressed by high rates of Fe deposition during summer. Consequently, net primary production (NPP) of Zygogonium, calculated from measured photosynthesis versus irradiance characteristics and calculated underwater irradiance (0.13 g C m?2 year?1) and in situ oxygen measurements (7.8 g C m?2 year?1), corresponds to only 0.3% and 18.1% of pelagic NPP. 4. Neither pelagic nor benthic Zygogonium primary production can supply enough C for efficient acidity removal. However, at rates of benthic NPP in summer of 21.4 mg C m?2 day?1, Zygogonium contributed 26% of the C equivalents to remove acidity associated with ferric iron, contributing at least seasonally to efficient alkalinity generation.  相似文献   

5.
Lake sturgeon Acipenser fulvescens are imperiled throughout the Laurentian Great Lakes basin. Efforts to restore this species to former population levels have been ineffective due in part to limited information regarding its early life history. The objectives of this study were to characterize the larval drift and biological attributes of age‐0 lake sturgeon in the lower Peshtigo River, Wisconsin. Lake sturgeon larvae were captured from May to June 2002 and 2003 using drift nets, while age‐0 juveniles were captured from June through October 2002 and 2003 using wading, snorkeling, backpack electrofishing, and haul‐seine surveys. Larval drift occurred within 14 days of adult spawning and extended from 1 to 3 weeks in duration, with two peaks in the number of fish drifting downstream each year. Larvae had a median total length (TL) of 19 mm (range: 13–23; N = 159) in 2002 and 18 mm (range: 13–24; N = 652) in 2003. Catch‐per‐unit‐effort for larvae was 0.18 fish h?1 m2 and 0.94 fish h?1 m2 in 2002 and 2003, respectively. Age‐0 juvenile lake sturgeon exhibited rapid growth (i.e. 2.57 mm day?1 in TL and 0.66 g day?1 in wet weight) throughout summer and fall months; relative condition of fish in both years was approximately 100, indicating good condition. Absolute abundance of age‐0 juveniles in 2003 was estimated at 261 fish using the Schnabel estimator. The results from this study indicate that the lower Peshtigo River contains important nursery habitats suitable for age‐0 lake sturgeon.  相似文献   

6.
The homogeneous distribution of the phytoplankton in a shallow (mean depth 8·6 m) unstratified lake, L. Neagh, Northern Ireland, facilitated the study of the interaction of components controlling gross photosynthesis per unit area. These included the photosynthetic capacity, the phytoplankton content of the euphotic zone, and a logarithmic function describing the effective radiation input. These factors were analysed for two sites, the open lake and Kinnego Bay, which respectively had standing crops of up to 90 and 300 mg chlorophyll a m?3 and maximum daily rates of gross integral photosynthesis of 11·7 and 15·6 g O2 m?2 day?1. Values are reduced by the high contribution to light attenuation by non-algal sources, which increases at low standing crops particularly in winter, when values of integral photosynthesis decrease to 0·5 g O2 m?2 day?1. This relative change is the result of self-shading behaviour of the phytoplankton altering the crop content of the euphotic zone at different population densities. Changes in the irradiance function, incorporating day length, are largely responsible for the changes in daily rates of integral gross photosynthesis; as daily irradiance is also a determinant of water temperature, it exerts further influence through the photosynthetic capacity which was strongly correlated with temperature. Much of the gain in gross photosynthesis resulting from higher photosynthetic capacity may not be reflected in a higher net column photosynthesis, because of the greater proportional rise in respiration with temperature. The balance in the water column between respiration losses and photosynthetic input may frequently alter since the ratio of illuminated to dark zones is between 1/4 to 1/5 in the open lake, and small shifts in any of the controlling features may result in conditions unfavourable for growth. This is analysed especially for the increase of diatoms in spring, when small modifications of the underwater light field can delay growth.  相似文献   

7.
Lake Pääjärvi, a boreal Finnish lake, was investigated in winter for weather conditions, structure and thickness of ice and snow, solar radiation, and under-ice current and temperature. Heat budget of Lake Pääjärvi in January–March was governed by terrestrial radiation losses of 20–35 W m?2 recompensed by ice growth of 0.5–1.0 cm day?1. In April, snow melted, albedo decreased from 0.8 to <0.1, and the mean ice melt rate was 1.5 cm day?1. Internal melting and surface melting were about equal. The mean turbulent heat loss was small. The heat flux from the water to ice was about 5 W m?2 in winter, increasing to 12 W m?2 in the melting season. The light attenuation coefficient was 1.1 m?1 for the congelation ice (black ice) in winter, compared with 1.5 m?1 for the lake water, and it was up to 3 m?1 for candled congelation ice in spring, and about 10 m?1 for superimposed ice (white ice) and snow. Gas bubbles were the main factor that reduced the transparency of ice. The radiation penetrating the ice heated the water body causing convective currents and horizontal heat transfer. This increased the temperature of the water body to about 3°C before the ice break-up. After the snow had melted, the euphotic depth (the depth of 1% surface irradiance) was estimated as 2.0 m, only two-thirds that in summer.  相似文献   

8.
Greenhouse gas fluxes from vegetated drained lake basins have been largely unstudied, although these land features constitute up to 47% of the land cover in the Arctic Coastal Plain in northern Alaska. To describe current and to better predict future sink/source activity of the Arctic tundra, it is important to assess these vegetated drained lake basins with respect to the patterns of and controls on gross primary production (GPP), net ecosystem exchange, and ecosystem respiration (ER). We measured CO2 fluxes and key environmental variables during the 2007 growing season (June through August) in 12 vegetated drained lake basins representing three age classes (young, drained about 50 years ago; medium, drained between 50 and 300 years ago; and old, drained between 300 and 2000 years ago, as determined by Hinkel et al., 2003) in the Arctic Coastal Plain. Young vegetated drained lake basins had both the highest average GPP over the summer (11.4 gCO2 m?2 day?1) and the highest average summer ER (7.3 gCO2 m?2 day?1), while medium and old vegetated drained lake basins showed lower and similar GPP (7.9 and 7.2 gCO2 m?2 day?1, respectively), and ER (5.2 and 4 gCO2 m?2 day?1, respectively). Productivity decreases with age as nutrients are locked up in living plant material and dead organic matter. However, we showed that old vegetated drained lakes basins maintained relatively high productivity because of the increased development of ice‐wedge polygons, the formation of ponds, and the re‐establishment of very productive species. Comparison of the seasonal CO2 fluxes and concomitant environmental factors over this chronosequence provides the basis for better understanding the patterns and controls on CO2 flux across the coastal plain of the North Slope of Alaska and for more accurately estimating current and future contribution of the Arctic to the global carbon budget.  相似文献   

9.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

10.
1. Phytoplankton carbon assimilation and losses (exudation, dark carbon losses) as well as oxygen release and dark community respiration were measured regularly for 2 years at four stations along the lower Spree (Germany). Carbon balance of river phytoplankton was estimated using measured assimilation, metabolic losses and variations in algal carbon along a stretch of river. 2. The light/dark bottle method was modified to simulate vertical mixing. 3. Waxing and waning of phytoplankton populations dominated the load of particulate organic carbon as well as the oxygen budget of the river. 4. Phytoplankton assimilated 310–358 g C m?2 yr?1. A mean value of 586 mg C m?3 day?1 was fixed in photosynthesis, with 16.7 mg C being exuded during the day and 20.1 mg lost at night. The measured dark respiration was equivalent to only 28% of the daily gross oxygen production of the plankton community. Phytoplankton washed from upstream lakes and reservoirs was not measurably damaged by turbulent transport. 5. In spring, 18–22% of assimilated carbon was used for net biosynthesis of phytoplankton along the river course. At this time, the carbon balance of this part of the Spree was dominated by autochthonous net production. During summer, however, total carbon losses exceeded the intensive carbon assimilation. The decline of algal biomass along the river course in summer was not explicable by measurable physiological losses. The importance of sedimentation and grazing losses is discussed.  相似文献   

11.
1. In addition to effects of direct predation by planktivorous fish, nutrient recycling by fish may also contribute to structuring foodwebs in lakes. There is little evidence, however, about whether underyearling fish undergoing several ontogenetic diet shifts may have a comparable bottom-up impact. 2. This study examined seasonal patterns of phosphorus (P) concentration and external load, phytoplankton, zooplankton and benthos, and diet shifts in three underyearling fish [perch (Perca fluviatilis), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernuus)] in the shallow, hypertrophic biomanipulated Bautzen reservoir, Germany. Phosphorus metabolism of fish was calculated by a balanced bioenergetics model on the basis of fish diet, growth and water temperature. 3. The fish showed several shifts from planktivory to other food sources during the sampling period from May to September. These shifts were probably caused by the seasonal succession of the zooplankton community, mainly the midsummer decline of Daphnia galeata. 4. The diet shifts in fish also had consequences for the amount of P consumed and released. During periods of dominant zooplanktivory, the excretion of P did not exceed the removal of P stored in pelagic prey. By contrast, if benthivory dominated, fish subsidized the pelagic P pool by excreting more P from benthic prey than had been removed from the pelagic area. This occurred predominantly in perch and ruffe during periods of low zooplankton biomass, whereas the roach ate more algae and therefore excreted less P of benthic origin. 5. Phosphorus release by underyearling fish was estimated at a maximum of 0.1 mg m–3 JY day–1. This value was negligible compared with both the external load of P to Bautzen reservoir and the concentration of P in the pelagic area during summer. It is therefore concluded that both the predominance of underyearling zooplanktivorous fish and the high Daphnia biomass during certain periods of the year in the Bautzen reservoir may be the reason that nutrient release by the fish structured the foodweb only marginally. 6. This study suggests that biomanipulation has altered both top-down and bottom-up impacts of fish in Bautzen reservoir. The highest efficiency of foodweb manipulations may be obtained after reduction of the external P loading below a certain threshold. In turn, if external restoration of eutrophied lakes is not accompanied by changes in fish community, then the combined forces of strong zooplanktivory and high P recycling of dense stocks of zooplanktivorous and benthivorous fish may hold the water in a eutrophic-like stage, even if external load has been significantly reduced.  相似文献   

12.
13.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

14.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

15.
The present paper contains the results of our microbiological and biogeochemical investigations carried out during a series of expeditions to the White Sea in 2002–2006. The studies were conducted in the open part of the White Sea, as well as in the Onega, Dvina, and Kandalaksha bays. In August 2006, the photosynthetic productivity in the surface water layer was low (47–145 mg C m?2 day?1). Quantitative characteristics of microbial numbers and activity of the the key microbial processes occurring in the water column of the White Sea were explored. Over the 5-year period of observations, the total number of bacterial cells in the surface layer of the water column varied from 50 to 600 thousand cells ml?1. In August 2006, bacterioplankton production (BP) was estimated to be 0.26–3.3 μg C l?1 day?1; the P/B coefficient varied from 0.22 to 0.93. The suspended organic matter had a lighter isotope composition (from ?28.0 to ?30.5‰) due to the predominance of terrigenous organic matter delivered by the Northern Dvina waters. The interseasonal and interannual variation coefficients for phytoplankton production and BP numbers are compared. The bacterioplankton community of the White Sea’s deep water was found to be more stable than that of the surface layer. In the surface layer of bottom sediments, methane concentration was 0.2–5.2 μl dm?3; the rate of bacterial sulfate reduction was 18–260 μg S dm?3 day?1; and the rates of methane production and oxidation were 24–123 and 6–13 nl CH4 dm?3 day?1, respectively. We demonstrated that the rates of microbial processes of the carbon and sulfur cycles occurring in the sediments of the White Sea basin were low.  相似文献   

16.
1. We examined the export of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested headwaters to aquatic habitats downstream in the coastal mountains of southeast Alaska, U.S.A. Fifty‐two small streams (mean discharge range: 1.2–3.6 L s?1), representing a geographic range throughout southeast Alaska, were sampled with 250‐μm nets either seasonally (April, July, September) or every 2 weeks throughout the year. Samples were used to assess the potential subsidy of energy from fishless headwaters to downstream systems containing fish. 2. Invertebrates of aquatic and terrestrial origin were both captured, with aquatic taxa making up 65–92% of the total. Baetidae, Chironomidae and Ostracoda were most numerous of the aquatic taxa (34, 16 and 8%, respectively), although Coleoptera (mostly Amphizoidae) contributed the greatest biomass (30%). Mites (Acarina) were the most numerous terrestrial taxon, while terrestrial Coleoptera accounted for most of the terrestrial invertebrate biomass. 3. Invertebrates and detritus were exported from headwaters throughout the year, averaging 163 mg invertebrate dry mass stream?1 day?1 and 10.4 g detritus stream?1 day?1, respectively. The amount of export was highly variable among streams and seasons (5–6000 individuals stream?1 day?1 and <1–22 individuals m?3 water; <1–286 g detritus stream?1 day?1 and <0.1–1.7 g detritus m?3 water). Delivery of invertebrates from headwaters to habitats with fish was estimated at 0.44 g dry mass m?2 year?1. We estimate that every kilometre of salmonid‐bearing stream could receive enough energy (prey and detritus) from fishless headwaters to support 100–2000 young‐of‐the‐year (YOY) salmonids. These results illustrate that headwaters are source areas of aquatic and terrestrial invertebrates and detritus, linking upland ecosystems with habitats lower in the catchment.  相似文献   

17.
We investigated whether rates of net primary production (NPP) and biomass turnover of floating grasses in a central Amazon floodplain lake (Lake Calado) are consistent with published evidence that CO2 emissions from Amazon rivers and floodplains are largely supplied by carbon from C4 plants. Ground‐based measurements of species composition, plant growth rates, plant densities, and areal biomass were combined with low altitude videography to estimate community NPP and compare expected versus observed biomass at monthly intervals during the aquatic growth phase (January–August). Principal species at the site were Oryza perennis (a C3 grass), Echinochloa polystachya, and Paspalum repens (both C4 grasses). Monthly mean daily NPP of the mixed species community varied from 50 to 96 g dry mass m?2 day?1, with a seasonal average (±1SD) of 64±12 g dry mass m?2 day?1. Mean daily NPP (±1SE) for P. repens and E. polystachya was 77±3 and 34±2 g dry mass m?2 day?1, respectively. Monthly loss rates of combined above‐ and below‐water biomass ranged from 31% to 75%, and averaged 49%. Organic carbon losses from aquatic grasses ranged from 30 to 34 g C m?2 day?1 from February to August. A regional extrapolation indicated that respiration of this carbon potentially accounts for about half (46%) of annual CO2 emissions from surface waters in the central Amazon, or about 44% of gaseous carbon emissions, if methane flux is included.  相似文献   

18.
Response of a eutrophic, shallow subtropical lake to reduced nutrient loading   总被引:11,自引:1,他引:10  
1. Lake Apopka (FL, U.S.A.) was subjected to decades of high nutrient loading from farms developed in the 1940s on converted riparian wetlands. Consequences included perennially high densities of cyanobacteria, low water transparency, elimination of submerged vegetation, modified fish community, and deposition of nutrient‐rich, flocculent sediments. 2. Initial steps were taken to reduce phosphorus (P) loading. Through strengthened regulation and purchase of farms for restoration, external P loading was reduced on average from 0.56 to 0.25 g P m?2 year?1 (55%) starting in 1993. The P loading target for the lake is 0.13 g P m?2 year?1. 3. For the first 6 years of P loading reduction the annual sedimentation coefficient (σ) averaged 13% less than the prior long‐term value (0.97 versus 1.11 year?1). The sedimentation coefficient, σ, was lower in the last 3 years of the study, but this period included extreme low‐water conditions and may not be representative. Annual σ was negative (net P flux to the water column) only 1 year. 4. Wind velocity explained 43% of the variation in σ during the period before reductions in total phosphorus (TP) concentration of lake water, but this proportion dropped to 6% after TP reductions. 5. Annual mean TP concentrations differed considerably from values predicted from external loading and hydraulic retention time using the Vollenweider–Organization for Economic Co‐operation and Development relationship. Reductions in lake water TP concentration fit model predictions better when multiyear (3‐year) mean values were used. 6. Evidence available to date indicates that this shallow, eutrophic lake responded to the decrease in external P loading. Neither recycling of sediment P nor wind‐driven resuspension of sediments prevented improvements in water quality. Reductions in TP concentration were evident about two TP‐resident times (2 × 0.9 year) after programmes began to reduce P loading. Improvements in concentrations of chlorophyll a and total suspended solids as well as in Secchi transparency lagged changes in lake‐water TP concentration but reached similar magnitudes during the study.  相似文献   

19.
1. We estimated the biomass and production of juvenile anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (parr) in 12 streams in the Skagerrak area of Norway to identify controlling environmental factors, such as land‐use and water chemistry. 2. Production estimates correlated positively with fish density in early summer, but not with the size of the catchment. The summer biomass of age‐0 brown trout and Atlantic salmon was smaller than that of age‐1 and constituted 27.4 and 25.7%, respectively, of the total biomass of the two groups. 3. Mean production of brown trout from July to September varied between streams, but in most cases it was below 2 g 100 m?2 day?1. Yearly cohort production from age‐0 in July to age‐1 in July was 10 g m?2 or less, with mean annual production of 1.32 g 100 m?2 day?1, equivalent to 4.8 g m?2 year?1. The corresponding annual cohort production of Atlantic salmon was 0.38 g 100 m?2 day?1 or 1.4 g m?2 year?1. Annual production to biomass ratio (P/B) for brown trout of the same cohort in the various streams was between 1.47 and 4.37; the overall mean (±SD) for all streams was 2.25 ± 0.94. Mean turnover rate of Atlantic salmon was 2.73 ± 0.24. 4. Production of 0+ brown trout during the summer correlated significantly with the percentage of agricultural land and forest/bogs in the catchment, with maxima at 20 and 75%, respectively. Age‐0 brown trout production also correlated with concentration of nitrogen and calcium in the water, with maxima at 2.4 and 14 mg L?1, respectively. 5. The results support the hypothesis that brown trout parr production reflects the quality of their habitat, as indicated by the dome‐shaped relationship between percentage of agricultural land and the concentration of nitrogen and calcium in the water.  相似文献   

20.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号