首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
Iwai N  Kagaya T 《Oecologia》2007,152(4):685-694
In aquatic food webs consumers can affect other members of the web by releasing nutrients as a result of their feeding activity. There is increasing evidence of these positive effects on primary producers, but such nutrient regeneration can also affect detritivores, by favoring the activities of detritus-associated microbes. We examined the effects of nutrient regeneration by tadpoles on leaf-eating detritivores under laboratory conditions. We fed four species of tadpoles three different food items (leaf litter, algae, and sludgeworms). We then conditioned terrestrial dead leaves with water from reared tadpoles (treatments) or food items alone (controls), and compared the C:N ratios of the conditioned leaves and the growth of the isopod Asellus hilgendorfii fed on the conditioned leaves. Tadpole feeding activity reduced the C:N ratio of conditioned leaves, and the effect was greatest when tadpoles were fed algae. Isopod growth rates were often higher when they were fed the litter conditioned with water from reared tadpoles. Thus, nutrient regeneration by tadpoles had a positive indirect effect on detritivores by enhancing leaf quality. Tadpoles often occur in nutrient-limited habitats where leaf litter is the major energy source, and their facilitative effects on leaf-eating detritivores may be of great significance in food webs by enhancing litter decomposition.  相似文献   

2.
In addition to potential benefits, biotechnology in silviculture may also be associated with environmental considerations, including effects on organisms associated with the living tree and on ecosystems and processes dependent on tree residue. We examined whether genetic modification of lignin characteristics (CAD and COMT) in Populus sp. affected leaf litter quality, the decomposition of leaf litter, and the assemblages of aquatic insects colonizing the litter in three natural streams. The decomposition of leaf litter from one of the genetically modified (GM) lines (CAD) was affected in ways that were comparable over streams and harvest dates. After 84 days in streams, CAD-litter had lost approximately 6.1% less mass than the non-GM litter. Genetic modification also affected the concentration of phenolics and carbon in the litter but this only partially explained the decomposition differences, suggesting that other factors were also involved. Insect community analyses comparing GM and non-GM litter showed no significant differences, and the two GM litters showed differences only in the 84-day litterbags. The total abundance and species richness of insects were also similar on GM and non-GM litter. The results presented here suggest that genetic modifications in trees can influence litter quality and thus have a potential to generate effects that can cross ecosystem boundaries and influence ecosystem processes not directly associated with the tree. Overall, the realized ecological effects of the GM tree varieties used here were nevertheless shown to be relatively small.  相似文献   

3.
1. Decomposition of litter mixtures in both terrestrial and aquatic ecosystems often shows non‐additive diversity effects on decomposition rate, generally interpreted in streams as a result of the feeding activity of macroinvertebrates. The extent to which fungal assemblages on mixed litter may influence consumption by macroinvertebrates remains unknown. 2. We assessed the effect of litter mixing on all possible three‐species combinations drawn from four tree species (Alnus glutinosa, Betula pendula, Juglans regia and Quercus robur) on both fungal assemblages and the rate of litter consumption by a common shredder, Gammarus fossarum. After a 9‐week inoculation in a stream, batches of leaf discs were taken from all leaf species within litter mixture combinations. Ergosterol, an indicator of fungal biomass, and the composition of fungal assemblages, assessed from the conidia released, were determined, and incubated litter offered to G. fossarum in a laboratory‐feeding experiment. 3. Mixing leaf litter species enhanced both the Simpson’s index of the fungal assemblage and the consumption of litter by G. fossarum, but had no clear effect on mycelial biomass. Specifically, consumption rates of J. regia were consistently higher for mixed‐species litter packs than for single‐species litter. In contrast, the consumption rates of B. pendula were not affected by litter mixing, because of the occurrence of both positive and negative litter‐mixing effects in different litter species combinations that counteracted each other. 4. In some litter combinations, the greater development of some fungal species (e.g. Clavariopsis aquatica) as shown by higher sporulation rates coincided with increased leaf consumption, which may have resulted from feeding preferences by G. fossarum for these fungi. 5. Where litter mixture effects on decomposition rate are mediated via shredder feeding, this could be due to indirect effects of the fungal assemblage.  相似文献   

4.
5.
Abstract.  1. We used structural equation models to discriminate direct and indirect effects of soil structure on the abundance of the antlion Myrmeleon crudelis , a neuropteran larva that digs conical pits in soil to capture small arthropods. We proposed that soil structure may modify antlion density indirectly through its influence on tree cover, which in turn directly alters the amount of sun and rain that can reach the forest floor and the amount of litter fall.
2. The proportion of finer soils positively affected antlion density directly, but negatively tree cover. Tree cover positively affected both the amount of leaf litter and antlion density. Leaf litter negatively affected antlion density. The indirect effects of soils varied in strength and sign depending on whether trees are considered shelters against sun and rain, or leaf litter sources. The relative importance of these effects might also vary between years and seasons.
3. Antlions may select patches of finer soils not only because they are easy substrates in which to build pits, but also for their indirect benefit as sites with low leaf litter, illustrating how indirect interactions may affect the local abundance of semi-sedentary insects.  相似文献   

6.
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.  相似文献   

7.
1. Leaf litter breakdown by shredders in the field is affected by leaf toughness, nutritional value and the presence of secondary compounds such as polyphenols. However, experiments involving the use of single fungal strains have not supported the assumption that leaf parameters determine food selection by shredders perhaps because of a failure to test for high consumption prior to isolation of fungal strains, overrepresentation of hyphomycetes or the potential effects of accompanying bacteria. In this study, we used bacteria‐free, actively growing fungi and oomycetes isolated from conditioned leaf litter for which a shredder had already shown high consumption rates. 2. Black alder (Alnus glutinosa) leaf litter was exposed to the littoral zone of Lake Constance in autumn, and subsamples were analysed for leaf parameters and consumption by Gammarus roeselii under standard conditions at regular intervals. On dates with a high consumption rate of the exposed leaves, 14 single strains of fungi and oomycetes were isolated, freed of bacteria and grown on autoclaved leaves. 3. Six of eight measured leaf parameters of exposed leaves were significantly correlated with Gammarus consumption rates, with high colinearity among leaf parameters hampering the identification of causal relations between leaf parameters and feeding activity. 4. When single strains of fungi and oomycetes were grown on autoclaved leaf litter, toughness of colonised leaves was always lower than in the control and the content of protein, N and P were increased. There were pronounced strain‐specific effects on leaf parameters. Consumption rates also differed significantly, with nine of fourteen isolates consumed at higher rates than controls and none proving to be a deterrent. Protein and polyphenol content were significantly correlated with consumption rates. Oomycete‐colonised leaves were consumed at similar rates but were of lower food quality than fungi‐colonised leaves. 5. We argue that direct strain‐specific attractant or repellent effects of fungi and oomycetes on consumption by G. roeselii are not important. However, we found indirect strain‐specific role operating via effects on leaf parameters.  相似文献   

8.
9.
  • 1. Forested headwater streams are generally considered to be light-limited ecosystems where primary production is reduced, and the main source of energy and nutrients is composed of allochthonous detritus. We hypothesised that in these ecosystems, the development of primary producers might also be limited by (1) competition for nutrients with leaf-litter decomposers (e.g. bacteria and fungi), and (2) leaf-litter leachates or allelopathic compounds produced by aquatic fungi.
  • 2. To test these hypotheses, a 48-day mesocosm experiment was performed in 12 artificial streams containing stream water inoculated with epilithic biofilm suspensions collected from a forested headwater stream. Three different treatments were applied: control without leaf litter (C), microbially conditioned leaf litter added at the beginning of the experiment and left to decompose throughout the experiment (L), or leaf litter renewed three times during the experiment (RL).
  • 3. We predicted that (1) the presence of litter, through microbial nutrient immobilisation and allelopathy, would reduce primary production and that (2) this effect would be amplified by litter renewal. We also predicted that nutrient competition would mean that (3) leaf-litter decomposers will alter primary producer community composition and physiology. These predictions were tested by analysing biofilm development, physiology, stoichiometry, and benthic algal community structure. To distinguish between the effects of nutrient immobilisation and allelopathy, the biofilm responses to leaf-litter leachates collected after different microbial conditioning durations were also measured in a parallel laboratory experiment.
  • 4. Contrary to our expectations, by day 28, primary producer growth was higher in the mesocosms containing leaf litter (L and RL) despite the rapid decrease in dissolved nutrients when leaf litter was present. After 48 days, the lowest phototrophic biofilm development was observed when leaf litter was renewed (RL), whereas phototrophic biofilm development was similar in the C and L treatments. Biofilm stoichiometry indicated that this effect was most probably related to greater nitrogen limitation in the RL treatment. The presence of leaf litter also affected primary producers' photophysiology, which could be attributed to changes in taxonomic composition and to physiological adjustments of primary producers.
  • 5. Laboratory measurements showed that despite a strong inhibition of primary producer growth by unconditioned leaf-litter leachates, microbially conditioned leaf litter had either low or no effects on the development of primary producers.
  • 6. These results reveal that leaf-litter decomposers can have both positive and negative effects on primary producers underlining the need to consider microbial interactions when investigating the functioning of forested headwater streams.
  相似文献   

10.
Plant litter decomposition is an essential ecosystem function that contributes to carbon and nutrient cycling in streams. Aquatic shredders, mainly macroinvertebrates, can affect this process in various ways; they consume leaf litter, breaking it down into fragments and creating suitable habitats or resources for other organisms through the production of fine particulate organic matter (FPOM). However, measures of litter‐feeding traits across a wide range of aquatic macroinvertebrates are still rare. Here, we assessed the contributions of 11 species of freshwater macroinvertebrates to litter decomposition, by measuring consumption rate, FPOM production, and assimilation rate of highly decomposable (Alnus glutinosa) or poorly decomposable (Quercus robur) leaf litter types. In general, an increase in the quality of litter improved the litter consumption rate, and fungal conditioning of the leaf litter increased both the litter consumption rate and FPOM production. Macroinvertebrates specializing in leaf litter consumption also appeared to be the most sensitive to shifts in litter quality and the conditioning process. Contrary to expectations, the conditioning process did not increase the assimilation of low‐quality litter. There was a strong correlation between the relative consumption rate (RCR) of the two litter types, and the relative FPOM production (RFP) was strongly correlated to the RCR. These findings suggest a consistent relationship between RCR and macroinvertebrate identity that is not affected by litter quality, and that the RFP could be inferred from the RCR. The varying responses of the macroinvertebrate feeding traits to litter quality and the conditioning process suggest that the replacement of a shredder invertebrate species by another species could have major consequences for the decomposition process and the detritus‐based food web in streams. Further studies onto the importance of invertebrate identity and the effects of litter quality in a variety of freshwater ecosystems are needed to understand the whole ecosystem functioning and to predict its response to environmental changes.  相似文献   

11.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

12.
We conducted a microcosm experiment with monocultures and all possible combinations of four aquatic hyphomycete species, Articulospora tetracladia, Flagellospora curta, Geniculospora grandis and Heliscus submersus, to examine the potential effects of species richness on three functional aspects: leaf litter decomposition (leaf mass loss), fungal production (ergosterol buildup) and reproductive effort (released spores). Both species richness and identity significantly affected fungal biomass and conidial production (number and biomass of released spores), whereas only species identity had a significant effect on leaf mass loss. In mixed cultures, all measures of fungal functions were greater than expected from the weighted performances of participating species in monoculture. Mixed cultures outperformed the most active monoculture for biomass accumulation but not for leaf mass loss and conidial production. The three examined aspects of aquatic hyphomycete activity tended to increase with species richness, and a complementary effect was unequivocally demonstrated for fungal biomass. Our results also suggest that specific traits of certain species may have a greater influence on ecosystem functioning than species number.  相似文献   

13.
Spatial subsidies are resources transferred from one ecosystem to another and which can greatly affect recipient systems. Increased subsidy quantity is known to increase these effects, but subsidy quality is likely also important. We examined the effects of leaf litter quality (varying in nutrient and tannin content) in pond mesocosms on gray treefrog (Hyla versicolor) biomass export, as well as water quality and ecosystem processes. We used litter from three different tree species native to Missouri [white oak (Quercus alba), northern red oak (Quercus rubra), and sugar maple (Acer saccharum)], one non-native tree [white pine (Pinus strobus)], and a common aquatic grass [prairie cordgrass (Spartina pectinata)]. We found that leaf litter species affected almost every variable we measured. Gray treefrog biomass export was greatest in mesocosms with grass litter and lowest with white oak litter. Differences in biomass export were affected by high tannin concentrations (or possibly the correlated variable, dissolved oxygen) via their effects on survival, and by primary production, which altered mean body mass. Effects of litter species could often be traced back to the characteristics of the litter itself: leaf nitrogen, phosphorus, and tannin content, which highlights the importance of plant functional traits in affecting aquatic ecosystems. This work and others stress that changes in forest species composition could greatly influence aquatic systems and aquatic–terrestrial linkages.  相似文献   

14.
Leaf litter accumulation can have either positive, negative or neutral effects on seed germination and seedling recruitment. In montane woodlands of the Mediterranean zone of central Chile, large amounts of leaf litter accumulate beneath the crowns of the summer semi-deciduous tree Kageneckia angustifolia and no regeneration of this or other plant species has been observed beneath this tree throughout the year. In a sample plot of 5000 m2 we selected ten K. angustifolia trees and measured (1) leaf litter accumulation beneath and outside canopy; (2) the effects of time elapsed since burial on viability of K. angustifolia seeds with and without a leaf litter cover; (3) field seed germination with presence or absence of leaf litter and (4) the possible chemical effects of K. angustifolia leaf litter leachates on seed germination of its own seeds and of other two co-occurring native shrubs species (Guindilia trinervis and Solanum ligustrinum). Our results show that a considerable accumulation of leaf litter occurred beneath K. angustifolia, and litter negatively affected seed viability and germination of this species in the field. Under laboratory conditions, K. angustifolia leaf litter leachates inhibited seed germination of its own seeds and of the two native shrub species. Chemical effects are likely involved in the negative effects of leaf litter on the recruitment of K. angustifolia in the montane sclerophyllous woodland of central Chile.  相似文献   

15.
Previous work in terrestrial and aquatic ecosystems has suggested that the relationship between breakdown rates of leaf litter and plant species richness may change unpredictability due to non‐additive effects mediated by the presence of key‐species. By using single‐ and mixed‐species leaf bags (7 possible combinations of three litter species differing in toughness; common alder [Alnus glutinosa ], sweet chestnut [Castanea sativa ], and Spanish oak [Quercus ilex ilex ]), I tested whether leaf species diversity, measured as richness and composition, affects breakdown dynamics and macroinvertebrate colonization (abundance, richness and composition) during 90 days incubation in a stream. Decomposition rates were additive, i.e., observed decomposition rates were not different from expected ones. However, decomposition rates of individual leaf species were affected by the mixture, i.e., there were species‐specific responses to mixing litter. The invertebrate communities colonizing the mixtures were not richer and more diverse in mixtures than in single‐species leaf bags. On the opposite, mixing leaf species had a negative, non‐additive effect on rates of shredder and taxa colonization and on macroinvertebrate diversity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In aquatic ecosystems, microorganisms and invertebrates provide critical links between plant detritus and higher trophic levels. Atyaephyra desmarestii is an omnivorous decapod that inhabits freshwaters and exhibits high tolerance to temperature oscillations and high ability to colonize new habitats. Although A. desmarestii is able to ingest a variety of foods, few studies have been conducted to elucidate the role of this freshwater shrimp on detritus breakdown in streams. In this study, A. desmarestii was allowed to feed on conditioned or unconditioned alder and eucalyptus leaves in microcosms with or without access to its fecal pellets. At the end of the experiment, total body length of the animals was measured, and the remaining leaves and fecal pellets were used for dry mass quantification and assessment of bacterial and fungal diversity by denaturing gradient gel electrophoresis (DGGE). Cluster analyses of DGGE fingerprints indicated that the major differences in microbial communities on leaves were between leaf types, while on fecal pellets were between conditioned and unconditioned leaves. However, the consumption rate by the shrimp did not differ between leaf types, and was significantly higher on leaves conditioned by microorganisms and in treatments without access to feces. In treatments without access to feces, the production of feces and fine particulate organic matter was also significantly higher for conditioned leaves. Overall, our results support the feeding plasticity of A. desmarestii and its potential role in plant litter breakdown in streams. This might have implications for maintaining stream ecosystem functioning, particularly if more vulnerable shredders decline.  相似文献   

17.
Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 °C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 °C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 °C when compared with individuals fed elevated litter at 15 °C. Mortality did not differ between litter types, but was higher at 15 °C than at 10 °C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually.  相似文献   

18.
1. We investigated the effects of riparian plant diversity (species number and identity) and temperature on microbially mediated leaf decomposition by assessing fungal biodiversity, fungal reproduction and leaf mass loss. 2. Leaves of five riparian plant species were first immersed in a stream to allow microbial colonisation and were then exposed, alone or in all possible combinations, at 16 or 24 °C in laboratory microcosms. 3. Fungal biodiversity was reduced by temperature but was not affected by litter diversity. Temperature altered fungal community composition with species of warmer climate, such as Lunulospora curvula, becoming dominant. 4. Fungal reproduction was affected by litter diversity, but not by temperature. Fungal reproduction in leaf mixtures did not differ or was lower than that expected from the weighted sum of fungal sporulation on individual leaf species. At the higher temperature, the negative effect of litter diversity on fungal reproduction decreased with the number of leaf species. 5. Leaf mass loss was affected by the identity of leaf mixtures (i.e. litter quality), but not by leaf species number. This was mainly explained by the negative correlation between leaf decomposition and initial lignin concentration of leaves. 6. At 24 °C, the negative effects of lignin on microbially mediated leaf decomposition diminished, suggesting that higher temperatures may weaken the effects of litter quality on plant litter decomposition in streams. 7. The reduction in the negative effects of lignin at the higher temperature resulted in an increased microbially mediated litter decomposition, which may favour invertebrate‐mediated litter decomposition leading to a depletion of litter stocks in streams.  相似文献   

19.
20.
Tierra del Fuego, Argentina (55°S), receives increased solar ultraviolet‐B radiation (UV‐B) as a result of Antarctic stratospheric ozone depletion. We conducted a field study to examine direct and indirect effects of solar UV‐B radiation on decomposition of Gunnera magellanica, a native perennial herb, and on the native community of decomposer organisms. In general, indirect effects of UV‐B mostly occur due to changes in the chemical composition of litter, whereas direct effects during decomposition result from changes in decomposer organisms and/or differences in the photochemical breakdown of litter. We designed a full‐factorial experiment using senescent leaves that had received either near‐ambient or attenuated UV‐B during growth. The leaves were distributed in litterbags and allowed to decompose under near‐ambient or reduced solar UV‐B during the growing season. We evaluated initial litter quality, mass loss, and nutrient release of decomposing litter, and microbial colonization of both initial litter and decomposed litter. We found that litter that decomposed under near‐ambient UV‐B had significantly less mass loss than litter that decomposed under reduced UV‐B. The UV‐B conditions received by plants during growth, which did not affect mass loss and nutrient composition of litter, affected fungal species composition but in different ways throughout the decomposition period. Before the decomposition trial, Beauveria bassiana and Penicillium frequentans were higher under reduced UV‐B, whereas Cladosporium herbarum and pigmented bacteria were more common under the near‐ambient compared to the reduced UV‐B treatment. After the decomposition period, leaves that had grown under reduced UV‐B showed higher frequency of Penicillium thomii and lower frequency of Trichoderma polysporum than leaves that had grown under near‐ambient conditions. The UV‐B condition received during decomposition also affected fungal colonization, with Penicillium chrysogenum being more frequent in leaves that had decomposed under reduced UV‐B, while the other species were not affected. Our results demonstrate that, in this ecosystem, the effects of UV‐B radiation on decomposition apparently occurred mostly through changes in the fungal community, while changes in photochemical breakdown appeared to be less important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号