首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenotypes of NIH 3T3 cells transfected with basic fibroblast growth factor (bFGF) cDNAs that express only the high molecular weight (HMW) forms of bFGF, the 18-kDa form, or all forms were examined. Cells producing the 18 kDa or all forms of bFGF were transformed at high levels of growth factor expression but were nontransformed at low levels. Cell producing low levels of HMW forms of bFGF were growth impaired when compared with the parental cells. These cells tended to form multinucleated giant cells, did not grow in soft agar, were nontumorigenic, had a normal bFGF receptor number, and had a nontransformed morphology. Cells expressing high levels of HMW bFGFs had a transformed morphology and were tumorigenic. These data suggest a specific functional role for HMWbFGF.  相似文献   

2.
The single-copy gene of human basic fibroblast growth factor (bFGF) encodes four co-expressed isoforms, with an apparent molecular weight (Mr) of 24kD, 22.5 kD, 22kD, and 18kD, co-translated from a single mRNA. As a tool for the study of the role exerted by the different bFGF isoforms in the biology of endothelial cells, human recombinant 24-kD bFGF was produced and purified from transformed Escherichia coli cells. To this purpose, the novel CUG start codon present in human bFGF cDNA and responsible for the synthesis of 24-kD bFGF was mutagenized to the classic AUG start codon. Transient expression of the mutagenized cDNA in simian COS-1 cells, followed by immunolocalization and subcellular fractionation, resulted in the synthesis of high levels of 24-kD bFGF, which localizes in the cell nucleus as an intact protein. When the same 24-kD bFGF, cDNA was expressed in E. coli, the recombinant protein was purified to homogeneity by heparin-Sepharose and ion-exchange chromatography. Recombinant 24-kD bFGF was similar to recombinant 18-kD bFGF in receptor-binding activity and in inducing cell proliferation, plasminogen activator production, and chemotactic movement in cultured endothelial cells. In agreement with the in vitro observations, 24-kD bFGF and 18-kD bFGF exerted a similar angiogenic response when assayed in vivo in the rabbit cornea. Experiments performed with the radiolabeled molecule demonstrated that 24-kD bFGF has an intrinsic ability to bind to high-affinity receptors when added to endothelial GM 7373 cell cultures. Receptor-bound 24-kD bFGF is internalized within the cell and associates with the nucleus with kinetics similar to 13-kD bFGF. Internalized 24-kD bFGF is first processed to the 18-kD form via a chloroquine-insensitive pathway and then to smaller fragments into the lysosomal compartment. At variance with the data obtained in transfected COS-1 cells, only limited amounts of exogenous internalized 24-kD bFGF associates with the nucleus in the intact form, mostly of the nuclear-bound molecule being represented by the processed 18-kD protein and by smaller degradation products. In conclusion, human recombinant 24-kD bFGF exerts a biological response in endothelial cells similar to 18-kD bFGF both in vitro and in vivo. Our data point to a different intracellular behavior of the high-molecular-weight bFGF isoform when added exogenously to cultured cells or when produced endogenously in transfected cells. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Multiple forms of FGF-2 have been shown to exist in many cell types. These different species of molecular masses of 18, 21.5, 22, and 24 kDa are all translated via the use of alternate initiation codons. The three forms of HMW FGF-2 initiate at CUGs codons, whereas the 18 kDa form initiates at an AUG codon. The entire 18 kDa sequence is contained within the larger forms of HMW FGF-2 as the AUG codon is 3′ to the CUG codons. Although the 18 kDa form FGF-2 is localized primarily in the cytosol, a significant fraction of the HMW FGF-2 has a nuclear location. The nuclear localization of HMW FGF-2 is determined by amino acid residues in the amino-terminal extended sequence. The residues required for nuclear localization appear to be RG repeats that are found at multiple sites within the amino-terminal extension of HMW FGF-2. The nuclear localization of HMW FGF-2 suggested that these species may have unique properties. By selecting permanent transfectants of 3T3 cells expressing HMW, 18 kDa FGF-2, or all forms of FGF-2, we have found that HMW FGF-2 can endow cells with a phenotype different from that of cells expressing 18 kDa FGF-2. These cells are transformed by what appears to be the intracellular action of HMW FGF-2. The interaction of FGF-2 with heparin has also been examined. Contrary to other reports claiming that FGF-2 required heparin or heparan-sulfate for interaction with its high-affinity receptor, we have found that FGF-2 binds to its receptor in the absence of glycosaminoglycans, and that this binding activates the receptor. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Normal adult bovine aortic endothelial cells were infected with various recombinant retroviruses expressing one, two, or three human basic fibroblast growth factor (bFGF) proteins normally synthesized by an alternative use of translation initiation codons. We show here that the constitutive expression of the AUG-initiated from (18 kDa) leads the transfected cells to form colonies in soft agar. The expression of the high molar weight (HMW) forms (22.5 and 21 kDa) initiated at one of the two CUG initiation codons allows cell immortalization, whereas the tumorigenic potential is reached when the three forms are constitutively expressed. Furthermore, we provide evidence that constitutive expression of (HMW) bFGF forms has a down-regulation effect on bFGF synthesis from the gene naturally active in parental endothelial cells.  相似文献   

5.
Basic fibroblast growth factor (bFGF) is a member of the heparin-binding growth factor (HBGF) family that includes at least seven species. These proteins are potent regulators of a number of cellular processes, including cell division and angiogenesis. Multiple forms of bFGF exist differing only in the length of their NH2-terminal extensions. These species of bFGF also have unique subcellular distributions. The smallest form (18 kD) occurs predominantly in the cytosol, while the higher molecular weight forms (22, 22.5, 24 kD) are associated with the nucleus and ribosomes. Here we report that the nuclear localization of the higher molecular weight forms of bFGF derives specifically from the amino acid sequences within the NH2-terminal extension. This has been demonstrated by constructing a chimeric protein containing the NH2-terminal extension of the highest molecular weight form of bFGF fused to beta-galactosidase (beta-gal). After transfection in a transient expression system, the chimeric protein accumulated in the nuclei of transfected cells, while the wild-type beta-gal was found predominantly in the cytoplasm.  相似文献   

6.
Basic fibroblast growth factor (bFGF) was internalized at a rapid rate by Chinese hamster ovary (CHO) cells that do not express significant numbers of high affinity receptors for bFGF as well as CHO cells that have been transfected with cDNA encoding FGF receptor-1 or FGF receptor-2. Internalization of bFGF was completely blocked by the addition of 10 micrograms/ml heparin in the parental CHO cells but only partially inhibited in cells expressing transfected FGF receptors. Bovine aortic endothelial cells also exhibit heparin-sensitive and heparin-resistant internalization of bFGF. The internalization of bFGF through the heparin-resistant pathway in CHO cells was efficiently competed by addition of unlabeled bFGF, was proportional to the number of receptors expressed, and approached saturation, suggesting that the heparin-resistant internalization was due to high affinity receptors. Internalization of bFGF through the heparin-sensitive pathway was not efficiently competed by unlabeled bFGF and did not approach saturation at concentrations of bFGF up to 50 ng/ml, properties similar to the interaction of bFGF with low affinity heparan sulfate binding sites on the cell surface. Internalization of bFGF in CHO cells not expressing FGF receptors was inhibited by heparin, heparan sulfate, and dermatan sulfate, the same glycosaminoglycans that block binding to cell-surface heparin sulfates. Internalization of bFGF in the parental CHO cells was inhibited at the same concentrations of heparin that block binding to cell-surface heparan sulfates. Finally, inhibition of the sulfation of CHO cell heparan sulfates by the addition of chlorate or digestion of CHO cell heparan sulfates with heparinase inhibited bFGF internalization in the parental CHO cells. These results demonstrate that bFGF can be internalized through a direct interaction with cell-surface heparan sulfates. Thus, there are two pathways for internalization of bFGF: high affinity receptor-mediated and heparan sulfate-mediated.  相似文献   

7.
The molecular weight of rat basic fibroblast growth factor is predicted to be 18 kDa when the amino acid sequence is read from the single AUG initiation codon found in the cDNA. DNA sequencing upstream of this AUG codon indicated, however, that there was an extended open reading frame. In vitro translation of the rat cDNA for basic FGF gave three proteins of 18.0, 21.5, and 22.0 kDa in equal abundance. The same proteins were produced in vivo by COS cells transfected with the rat cDNA. Deletion of 81 base pairs from the reading frame upstream of the AUG codon resulted in the expression of only one protein observed at 18.0 kDa. These results indicated that the 22.0 and 21.5 kDa forms of rat basic FGF were formed when translation initiates at the alternative upstream non-AUG codons. Rat cell lines and tissues were found to express all three forms of basic FGF protein. The cDNA was used to analyze the subcellular distribution of the different forms of rat basic FGF. Subcellular fractionation and immunofluorescence of transfected COS cells showed that all three forms of the protein localized preferentially in the nucleus. Expression of a truncated cDNA from which 81 base pairs (27 amino acids) of the upstream reading frame had been deleted, showed localization of the smaller form of bFGF alone in the nucleus. These results demonstrated that although the amino acids that were deleted from the N-terminus of rat basic fibroblast growth factor have a sequence characteristic of nuclear localization motifs, they are not obligatory for the transport of the growth factor into the nucleus. Nuclear extracts taken from transfected cells also contained two smaller proteins of 16 and 12 kDa that were detected by Western blot analysis. It is possible that these are proteolytic products of bFGF.  相似文献   

8.
Basic fibroblast growth factor (bFGF, FGF-2) is progressively lost from mammary epithelial cells as they become malignant. To investigate the effects of restoring the expression of bFGF in breast cancer cells, we constructed MCF-7 cells that permanently overexpress 18-kD cytoplasm-localizing bFGF (MCF-7/ΔAFGF(18) cells) and cells that express both the 18-kD along with the 22- and 24-kD nucleus-localizing bFGF peptides (MCF-7/NCFFGF(18,22,24) cells), using retroviral transduction. These stable cell constructs grew more slowly and had a larger fraction of their populations in the G0/G1 phase of the cell cycle than control cells. All forms of bFGF were eluted from MCF-7/NCFFGF(18,22,24) cell monolayers with 2 M NaCl, in contrast to fibroblasts that were demonstrated to secrete only the 18-kD bFGF isoform. High-affinity binding of 18-kD 125I-bFGF to these cells was significantly decreased, probably because of competitive binding by the autocrine-secreted bFGF. Recombinant 18-kD bFGF that was previously demonstrated in our laboratory to inhibit proliferation, activate MAP kinase, and induce the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in MCF-7 cells, further inhibited MCF-7/ΔAFGF(18) cells but had no effect on MCF-7/NCFFGF(18,22,24) cells. The total cellular content of the high-affinity FGF receptors 1–3 was unchanged, but FGF receptor 4 was decreased in MCF-7/NCFFGF(18,22,24) cells. Both cell types overexpressing bFGF isoforms had elevated levels of the cyclin-dependent kinase inhibitor p27Kip1 but not that of p21WAF1/CIP1. In MCF-7/ΔAFGF(18) cells, FGFR1 and MAP kinase were constitutively phosphorylated. Exogenous recombinant 18-kD bFGF did not accentuate these effects but did induce an increase in the levels of p21WAF1/CIP1 corresponding to the further inhibition induced by exogenous bFGF in these cells. In MCF-7/NCFFGF(18,22,24) cells, FGFR1 and MAP kinase were not phosphorylated at baseline nor upon stimulation with recombinant bFGF, and exogenous bFGF only had a minimal effect on low steady-state p21WAF1/CIP1 levels. However, stimulation of these cells with phorbol ester or insulin did result in MAP kinase phosphorylation. While growth-inhibited in the G1 phase of the cell cycle, MCF-7/NCFFGF(18,22,24) cells retained active isoforms of cdk2 and the hyperphosphorylated form of Rb. These data suggest that high molecular weight forms of bFGF overexpressed in MCF-7 cells do not activate the receptor-mediated MAP kinase pathway, and do not induce p21WAF1/CIP1 in an autocrine manner, but inhibit proliferation through other, possibly direct nuclear signalling mechanisms. J. Cell. Physiol. 177:411–425, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Basic fibroblast growth factor (bFGF or FGF-2) is a pleiotropic growth factor that promotes growth of mesenchymal and epithelial cells, stimulates angiogenesis and neuroprotection. Moreover, exogenous bFGF by stimulating angiogenesis promotes healing of gastroduodenal ulcers and cardiac and brain injury. All these actions were demonstrated in regard to 18 kDa bFGF isoform that is secreted by cells via an ER/Golgi-independent pathway and activates FGF receptors. However in some transformed and stressed cells and in some tissues (e.g. brain) the single copy bFGF gene encodes multiple gene products: 18 kDa and also higher molecular weight (HMW) bFGF isoforms: ∼21 and ∼22 kDa in rodents, and ∼22, ∼23 and ∼24 kDa in humans. The biologic roles of these HMW bFGF isoforms in vivo remain unknown. In this study we demonstrated that in normal, uninjured gastric mucosa, bFGF is almost exclusively expressed as 18 kDa isoform translated through a classical AUG (methionine) codon. In contrast, in injured gastric mucosa of rat, bFGF gene is preferentially translated to HMW bFGF isoforms through alternative CUG (leucine) initiation codon. Gastric mucosal injury caused in rats a significant increase in bFGF mRNA at 8 and 24 h vs. normal mucosa and a significant increase in bFGF protein at 24–72 h, mainly due to increased expression of ∼21 and ∼22 kDa HMW bFGF isoforms. This is first demonstration that gastric mucosal injury and repair triggers local activation of bFGF gene with preferential translation of HMW bFGF isoforms through a non-canonical CUG codon. This study uncovered CUG-initiated HMW bFGF translation as a novel regulatory mechanism operating in vivo during gastric injury repair.  相似文献   

10.
We investigated the role of low molecular weight (LMW) and high molecular weight (HMW) isoforms of basic fibroblast growth factor 2 (FGF-2) in the expression of transformation-related phenotypic alterations, drug sensitivity modulation, and gene amplification potential. For this purpose, we used NIH 3T3 and A31 cells transfected with different cDNA FGF-2 constructs allowing expression of the different proteins. Both cell lines showed marked phenotypic alterations when expressing the LMW FGF-2 or the four HMW FGF-2 isoforms: they acquired a transformed morphology, grew at higher saturation densities in 10% serum, and exhibited anchorage-independent growth and increased invasive potential. However, HMW FGF-2-expressing cells also grew in 1% serum and their invasive potential was lower than in cells expressing all FGF-2 forms or LMW FGF-2 alone. We have grown the different cell lines under a selective pressure of N-(phosphonacetyl)-l-aspartate (PALA), a drug which specifically inhibits the aspartate transcarbamylase activity of the multifunctional carbamyl-P-synthetase/aspartate transcarbamylase/dihydro-orotase genes (CAD) enzyme (and thus inhibits de novo pyrimidine biosynthesis) and selects for cells with amplified copies of the CAD gene. Our results demonstrate that aberrant expression of the LMW FGF-2 and/or HMW FGF-2 isoforms differently modulates drug resistance and gene amplification properties in the NIH 3T3 and A31 cell lines by differential amplification of the CAD gene. Coexpression of all isoforms appears to be necessary to obtain cumulative effects and nuclear-targeted HMW FGF-2 has a pivotal role in such a cooperation.  相似文献   

11.
When NIH 3T3 cells were transfected with the cDNA for basic fibroblast growth factor (bFGF), most cells displayed a transformed phenotype. Acquisition of a transformed phenotype was correlated with the expression of high levels of bFGF (Quarto et al., 1989). Cells that had been transformed as a result of transfection with bFGF cDNA had a decreased capacity to bind 125I-bFGF to high affinity receptors. NIH 3T3 cells transfected with bFGF cDNA that expressed lower levels of bFGF were not transformed and had a normal number of bFGF receptors. NIH 3T3 cells transfected with the hst/Kfgf oncogene, which encodes a secreted molecule with 45% homology to bFGF, also displayed a transformed phenotype and decreased numbers of bFGF receptors. However, NIH 3T3 cells transfected with the H-ras oncogene were transformed but had a normal number of bFGF receptors. Thus, transformation by bFGF-like molecules resulted in downregulation of bFGF receptors. Receptor number was not affected by cell density for both parental NIH 3T3 cells and transformed cells. In the cells transfected with bFGF cDNA that were not transformed, the receptors could be downregulated in response to exogenous bFGF. Conditioned medium from transformed transfected cells contained sufficient quantities of bFGF to downregulate bFGF receptors on parental NIH 3T3 cells. Thus, the downregulation of bFGF receptors seemed related to the presence of bFGF in an extracytoplasmic compartment. Treatment of the transformed transfected NIH 3T3 cells with suramin, which blocks the interaction of bFGF with its receptor, reversed the morphological transformation and restored receptors almost to normal numbers. These results demonstrate that in these cells bFGF transforms cells by interacting with its receptor and that bFGF and hst/K-fgf may use the same receptor.  相似文献   

12.
The single-copy gene for fibroblast growth factor-2 (FGF-2) encodes for multiple forms of the protein with molecular masses of 24, 22.5, 22, and 18 kDa. We reported previously that the 24-22-kDa FGF-2 forms inhibit the migration of endothelial and MCF-7 cells by 50% and 70%, respectively. Here we show that this inhibition of migration is mediated by the estrogen receptor (ER). We have found that depletion of the receptor in either cell line abrogates the inhibitory activity of 24-kDa FGF-2 while re-introduction of the ER into deficient cells once again promotes the inhibitory response. To determine whether exposure to 24-kDa FGF-2 resulted in the activation of the estrogen receptor, 3T3 cells were cotransfected with estrogen receptor cDNA and an estrogen regulatory element-luciferase gene reporter construct and treated with 24- and 18-kDa FGF-2. The high molecular weight form stimulated luciferase activity 5-fold while 18-kDa FGF-2 at the same concentration had no effect. Treatment of ER-positive MCF-7 cells transfected with the reporter construct only showed the same results. Inclusion of the pure estrogen antagonist ICI 182,780 blocked the increase in luciferase activity by 24-kDa FGF-2, further indicating that the response was estrogen receptor dependent. Expression of dominant negative FGF receptor 1 inhibited ER activation, indicating that this was the cell surface receptor mediating the effect. Although growth factor-dependent activation of the ER was reported to require mitogen-activated protein kinase-induced phosphorylation at Ser(118) in COS and HeLa cells, this mechanism is not involved with the activation by 24-kDa FGF-2. These results suggest that the addition of 55 amino acids to the amino-terminal end of 18-kDa FGF-2 by alternative translation alters FGF-2 function and allows for the activation of a second signaling pathway involving the estrogen receptor.  相似文献   

13.
The high molecular weight (HMW) fibroblast growth factor (FGF)-2 isoform of 210 amino acids initiated at a CUG start codon possesses a nuclear localization sequence and is not secreted. In contrast, the low molecular weight (LMW) isoform of 155 amino acids initiated at the AUG start codon can be secreted and activates the cell surface FGF receptors. The two isoforms possess different biological properties; however, little is known about the intracrine regulatory mechanisms involved in the biological effects of the HMW FGF-2 isoform. Using pancreatic cells stably transfected with cDNAs leading to the expression of either the HMW FGF-2 (A3 cells) or the LMW form (A5 cells), we provide evidence that the two FGF-2 isoforms differentially modulate PKC levels. The LMW FGF-2 up-regulated the PKC epsilon levels by 1.6-fold; by contrast the HMW isoform down-regulated the level of this PKC isotype by about 3-fold and increased the amount of PKC delta by 1.7-fold. PKC mRNAs were also modified, suggesting that PKC expression was regulated at a pretranslational level. Additionally, expression of different levels of the HMW FGF-2 with an inducible expression system confirmed the role of this isoform on PKC delta and epsilon expressions. Increased activation of ERK-1 and -2 was also observed in cells expressing the HMW FGF-2. By using different PKC inhibitors and a dominant negative PKC delta, it was found that ERK activation was PKC delta-dependent. These data indicate that expression of HMW FGF-2 can modify PKC levels by acting at the intracellular level and that the overexpression of PKC delta induces ERK-1/2 activation. The expression of a dominant negative FGFR1 did not reduce ERK-1/2 activation by the HMW FGF-2, suggesting that ERK activation does not require FGFR activity. The signaling cascade downstream of ERK might be involved in the known mitogenic effect exerted by this FGF-2 isoform.  相似文献   

14.
慢病毒介导的稳定表达bFGF的胎儿肝脏基质细胞株的建立   总被引:1,自引:0,他引:1  
通过重组慢病毒系统感染人胎儿肝脏基质细胞(fetalliverstromalcell,FLSC),建立了能够稳定、高效表达碱性成纤维细胞生长因子(basicfibroblastgrowthfactor,bFGF)的细胞株bFGF/FLSC.从流产胎儿肝脏组织分离富集基质细胞,对其进行了生长特性和表面标志的鉴定,其在体外维持传代35代,依然保持正常的染色体核型.从胎儿骨髓间充质干细胞中克隆得到bFGF基因,构建重组慢病毒载体,感染FLSC,根据荧光表达强弱进行流式分选,获得能够继续稳定传代的低表达和高表达bFGF的两株细胞,RT-PCR和蛋白质印迹证实,细胞株中bFGF基因的稳定表达.RT-PCR结果显示,弱荧光和强荧光表达细胞的bFGF,在mRNA水平的表达分别是转染空载体细胞的2.33倍和6.19倍;蛋白质印迹结果显示,在蛋白质水平表达分别是1.76倍和5.05倍.用建立的bFGF/FLSC作饲养层细胞体外培养人胚胎干细胞(humanembryonicstemcells,hES),结果证明,其能在无或少量添加外源bFGF的条件下,维持人ES细胞增殖及其干性达20代.bFGF/FLSC细胞株的建立,将为构建低成本、安全高效的人胚胎干细胞的培养体系及研究造血细胞的发育分化提供适宜的微环境.  相似文献   

15.
In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.  相似文献   

16.
Summary We investigated the regulation of expression of bFGF and aFGF in cultures of normal human dermal fibroblasts grown in a defined, serum-free medium which did not contain FGF. Under these conditions we detected three molecular weight forms of bFGF protein [18.0, 23.0, and 26.6 kiloDaltons (kD)] and three molecular weight forms of aFGF protein (18.4, 19.2, and 28.6 kD) in these cells using western blot analysis. The addition of fetal bovine serum (FBS) to these cultures caused an accumulation of all three molecular weight forms of bFGF protein with a more dramatic accumulation of the 23.0 and 26.6 kD forms. In contrast, the addition of FBS to the cultures had no effect on the level of aFGF proteins. Analysis of mRNA isolated from cells grown in serum-free medium revealed multiple species of both bFGF and aFGF RNA with molecular weights that correlated with our previous observations. The abundance of all bFGF mRNA species increased dramatically after serum treatment while the abundance of aFGF mRNA species increased only slightly. Our observations demonstrate that factor(s) present in FBS elevate the levels of bFGF mRNA and protein beyond the levels already present in the cultures growing in serum-free medium. Moreover, both bFGF and aFGF protein are present in these cells as multiple molecular weight species. Some of these forms are higher in apparent molecular weight than would be predicted from ATG-initiated primary translation products of these genes. We also show that the cells used for this study proliferate in response to bFGF and aFGF, thus, it is possible that the growth of these cells could be subject to autocrine/paracrine control in certain conditions.  相似文献   

17.
Basic fibroblast growth factor (bFGF) is a heparin-binding angiogenic polypeptide mitogen. Protein sequence analysis of bFGF isolated from tissue sources initially established that it is composed of 146 amino acids (apparent Mr 18,000). More recently larger apparent molecular weight forms have been identified and partially characterized. In addition, these high molecular weight forms (apparent Mr 22,000 and 25,000) have been shown to localize preferentially to nuclear fractions of transfected cells. In this report we demonstrate that the higher molecular weight, amino terminally extended forms of bFGF contain methylated arginine residues. The demonstration is based on 1) amino acid sequence analysis of a protein known to contain methylated arginine (myelin basic protein) and a comparison with amino acid sequence analysis of trypsin-derived fragments of the high molecular weight bFGF purified from guinea pig brain and 2) the ability to label in vivo the high molecular weight forms of bFGF with S-adenosyl-L-(methyl-3H)-methionine, the substrate of arginine-protein methylase I. These results are suggestive of a role of arginine methylation in directing nuclear localization of certain forms of bFGF.  相似文献   

18.
19.
Neural cell adhesion molecules (NCAMs) are cell surface glycoproteins that appear to mediate cell-cell adhesion. In vertebrates NCAMs exist in at least three different polypeptide forms of apparent molecular masses 180, 140, and 120 kD. The 180- and 140-kD forms span the plasma membrane whereas the 120-kD form lacks a transmembrane region. In this study, we report the isolation of NCAM clones from an adult rat brain cDNA library. Sequence analysis indicated that the longest isolate, pR18, contains a 2,574 nucleotide open reading frame flanked by 208 bases of 5' and 409 bases of 3' untranslated sequence. The predicted polypeptide encoded by clone pR18 contains a single membrane-spanning region and a small cytoplasmic domain (120 amino acids), suggesting that it codes for a full-length 140-kD NCAM form. In Northern analysis, probes derived from 5' sequences of pR18, which presumably code for extracellular portions of the molecule hybridized to five discrete mRNA size classes (7.4, 6.7, 5.2, 4.3, and 2.9 kb) in adult rat brain but not to liver or muscle RNA. However, the 5.2- and 2.9-kb mRNA size classes did not hybridize to either a large restriction fragment or three oligonucleotides derived from the putative transmembrane coding region and regions that lie 3' to it. The 3' probes did hybridize to the 7.4-, 6.7-, and 4.3-kb message size classes. These combined results indicate that clone pR18 is derived from either the 7.4-, 6.7-, or 4.3-kb adult rat brain RNA size class. Comparison with chicken and mouse NCAM cDNA sequences suggests that pR18 represents the amino acid coding region of the 6.7- or 4.3-kb mRNA. The isolation of pR18, the first cDNA that contains the complete coding sequence of an NCAM polypeptide, unambiguously demonstrates the predicted linear amino acid sequence of this probable rat 140-kD polypeptide. This cDNA also contains a 30-base pair segment not found in NCAM cDNAs isolated from other species. The significance of this segment and other structural features of the 140-kD form of NCAM can now be studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号