首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Lizhi Wang 《农业工程》2013,33(5):282-286
Plant growth, biomass allocation, root distribution and plant nutrient content were investigated in the submerged macrophyte Potamogeton crispus growing in heterogeneous sediments. Three experimental sediments heterogeneous in nutrient content and phosphorus release capacity were used: sandy loam with low nutrient content (A), clay with intermediate nutrient content (B), and clay with high nutrient content (C). Biomass accumulation was significantly affected by the sediment type, and was highest in clay C (1.23 mg per plant dry weight) but lowest in sandy loam (0.69 mg per plant dry weight). The root:shoot ratios in treatments A, B and C were 0.30, 0.14 and 0.09, respectively. P. crispus allocated more biomass to roots in sandy loam compared with the other sediments. The average root numbers in sediments A, B and C were 16, 19 and 20, respectively, and the total root lengths in sediments A, B and C were 238.84, 200.36 and 187.21 cm, respectively. Almost 90% of the root biomass was distributed in the 0–15 cm depth in sediments B and C, compared with 64.53% in sediment A. The rank order of plant nitrogen and phosphorus concentrations in the sediment types was C > B > A. These results indicate that both sediment structure and nutrient availability influence the growth and distribution of the root system of P. crispus.  相似文献   

2.

Background and Aims

Two main strategies that allow plants to cope with soil waterlogging or deeper submergence are: (1) escaping by means of upward shoot elongation or (2) remaining quiescent underwater. This study investigates these strategies in Lotus tenuis, a forage legume of increasing importance in areas prone to soil waterlogging, shallow submergence or complete submergence.

Methods

Plants of L. tenuis were subjected for 30 d to well-drained (control), waterlogged (water-saturated soil), partially submerged (6 cm water depth) and completely submerged conditions. Plant responses assessed were tissue porosity, shoot number and length, biomass and utilization of water-soluble carbohydrates (WSCs) and starch in the crown.

Key Results

Lotus tenuis adjusted its strategy depending on the depth of submergence. Root growth of partially submerged plants ceased and carbon allocation prioritized shoot lengthening (32 cm vs. 24·5 cm under other treatments), without depleting carbohydrate reserves to sustain the faster growth. These plants also developed more shoot and root porosity. In contrast, completely submerged plants became quiescent, with no associated biomass accumulation, new shoot production or shoot elongation. In addition, tissue porosity was not enhanced. The survival of completely submerged plants is attributed to consumption of WSCs and starch reserves from crowns (concentrations 50–75 % less than in other treatments).

Conclusions

The forage legume L. tenuis has the flexibility either to escape from partial submergence by elongating its shoot more vigorously to avoid becoming totally submerged or to adopt a non-elongating quiescent strategy when completely immersed that is based on utilizing stored reserves. The possession of these alternative survival strategies helps to explain the success of L. tenuis in environments subjected to unpredictable flooding depths.  相似文献   

3.
Root morphological adaptation is an important mechanism for wetland plants to adapt to environmental conditions. The objective of this study was to investigate the impact of water depth on biomass allocation and root morphology (including root mean diameter, root length, root surface area and root volume) of a wetland plant species, Juncellus serotinus (Cyperaceae). Four levels of water depth were chosen: 10, 30, 50 and 70 cm. Due to the enormous root system, and for easy observation, five groups were used according to the distance from the rhizome: 0–5, 5–10, 10–15, 15–20 and longer than 20 cm (> 20 cm). Results showed that with increasing water depth plant total biomass and root biomass decreased significantly (p < 0.05), and that biomass was mainly allocated to shoots resulting in decreased root to shoot ratio. Root morphology parameters also changed significantly with increasing water depth (p < 0.05). Root mean diameter in all treatments and all other root morphology parameters decreased with increasing distance from the rhizome, while maximum root length, root surface area and root volume in 10 and 30 cm occurred between 5 and 15 cm from the rhizome. The results indicate that shallow water (less than 30 cm in depth) is favorable for the development of J. serotinus root system, and that root morphological characteristics shift with increasing distance from the rhizome.  相似文献   

4.
水深是影响湿地植物生长和分布的一个重要限制性因子,该研究以具有典型异型叶性的钝脊眼子菜(Potamogeton octandrus)为对象,通过分析浅水处理(10 cm和30 cm)和深水处理(50 cm和70 cm) 4个水深梯度下幼苗生长、生物量及繁殖策略等,探讨钝脊眼子菜在不同水深条件下的适应机制和表型可塑性。结果表明,钝脊眼子菜植株到达水面后出现异型叶,相对生长率显著降低,且与水深梯度呈正相关。钝脊眼子菜的株高随着水深的增加呈现爆发式的增长,10 cm水深的总茎长显著低于其他水深处理。水深对节间数也有显著性影响,其中,30 cm组处理节间数最多;而深水处理组的节间长和生物量均显著高于浅水处理组。分蘖数在4组处理之间均表现出显著性差异,随着水深的增加呈现显著性递减。生物量和地上生物量分配则随着水深增加而明显增加。水深处理对有性生殖指标有显著性影响,水深的增加抑制其有性繁殖。其中,10 cm条件下无花序形成,50 cm水深下的花粉量、P/O比和花序数显著高于其他处理组,且深水处理的结实数和结实率均显著高于30 cm组。这表明钝脊眼子菜可通过调整形态可塑性和生物量分配,并采取不同的繁殖策略,以达到对水深的最佳适应,其中最适水深生长范围在50 cm左右。  相似文献   

5.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

6.
Allometric scaling models describing size-dependent biological relationships are important for understanding the adaptive responses of plants to environmental variation. In this study, allometric analysis was used to investigate the biomass allocation and morphology of three submerged macrophytes (Potamogeton maackianus, Potamogeton malaianus and Vallisneria natans) in response to water depth (1.0 and 2.5?m) in an in situ experiment. The three macrophytes exhibited different allometric strategies associated with distinct adjustments in morphology and biomass allocation in response to varying water depths. In deeper water, after accounting for the effects of plant size, P. maackianus and P. malaianus tended to enhance light harvesting by allocating more biomass to the stem, increasing shoot height and specific leaf area. V. natans tended to allocate more biomass to the leaf than to the basal stem (rosette), showing a higher leaf mass ratio and shoot height in deeper water. The three species decreased biomass allocation to roots as water depth increased. The main effect of water depth treatments was reduced light availability, which induced plastic shoot or leaf elongation. This shows that macrophytes have evolved responses to light limitation similar to those of terrestrial plants.  相似文献   

7.
Both competition and burial are important factors that influence plant growth and structuring plant communities. Competition intensity may decline with increased burial stress. However, experimental evidence is scarce. The aim of this study was to elucidate the role of burial stress in influencing plant competition by investigating biomass accumulation, biomass allocation, and clonal growth performance of Carex brevicuspis, one of the dominant species in the Dongting Lake wetland in China. The experiment was conducted with two typical wetland species, C. brevicuspis (target plant) and Polygonum hydropiper (neighbor plant), in a target-neighbor design containing three densities (0, 199, and 398 neighbor plants m-2) and two burial depths (0 and 12 cm). The biomass accumulation of C. brevicuspis decreased with increment of P. hydropiper density in the 0 cm burial treatment. However, in the 12 cm burial treatment, biomass accumulation of C. brevicuspis did not change under medium and high P. hydropiper densities. The relative neighbor effect index (RNE) increased with enhancement of P. hydropiper density but decreased with increasing burial depth. The shoot mass fraction decreased with P. hydropiper density in the 12 cm burial treatments, but the root mass fraction was only affected by burial depth. However, the rhizome mass fraction increased with both P. hydropiper density and burial depth. The number of ramets decreased with increasing P. hydropiper density. With increasing burial depth and density, the proportion of spreading ramets increased from 34.23% to 80.44%, whereas that of clumping ramets decreased from 65.77% to 19.56%. Moreover, increased P. hydropiper density and burial depth led to greater spacer length. These data indicate that the competitive effect of P. hydropiper on C. brevicuspis was reduced by sand burial, which was reflected by different patterns of biomass accumulation and RNE at the two burial depth treatments. A change from a phalanx to a guerrilla growth form and spacer elongation induced by sand burial helped C. brevicuspis to acclimate to competition.  相似文献   

8.
Tissue damage to seedlings can limit their later growth, and the further effects may be greater with increasing seedling age. Seedlings, however, can minimize the effect of damage through compensatory growth. Seedlings of Pharbitis purpurea grow in frequently disturbed habitats and generally tolerate damage to leaf tissues. We evaluated the compensatory responses of the cotyledon to different levels of defoliation and their effect on seedling growth and development. We also examined the relationship between seeding depth and compensatory growth. We tested seven defoliation treatments with one or both cotyledons and/or the apical meristem of seedlings removed from seeds buried at a seeding depth of either 2 or 5?cm. We then measured 12 growth traits of the seedlings to assess development and growth compensation. The area, thickness, biomass, and longevity of the remaining cotyledon were also measured to quantify increased growth as result of treatment effects at both seeding depths. The results showed that defoliation reduced seedling height, belowground length, and total biomass significantly in subsequent growth in all treatments. However, defoliation treatments had direct positive impacts on growth at 2?cm depth compared with 5?cm depth. In contrast, the compensation of cotyledon area (C area), biomass (C mass), and thickness (C thickness) was greater at 5?cm depth than at 2?cm depth. The results thus indicate that P. purpurea seedlings adopted a compensatory growth strategy to resist leaf loss and minimize any adverse effects using the remaining cotyledon. Increasing seeding depth can aggravate the compensatory growth of remain cotyledon after partial defoliation.  相似文献   

9.
《Aquatic Botany》2007,86(1):9-13
Plant growth, biomass allocation and root distribution were investigated in the submerged macrophyte Vallisneria natans growing in heterogeneous sediments. Experimentally heterogeneous sediment environments were constructed by randomly placing 4 cm of clay or sandy loam into the top (0–4 cm) or bottom (4–8 cm) layer within an experimental tray, providing two homogeneous and two heterogeneous treatments. Biomass accumulation was significantly affected by the experimental treatments: higher in the homogeneous sediment of clay (32 mg per plant) and the two heterogeneous treatments (about 27 mg per plant), but lower in the homogeneous sediment of sandy loam (15 mg per plant). Root: shoot ratio was also different among the four treatments. Compared with the treatments of clay in the top layer, plants allocated more biomass to roots at the treatments of sandy loam in the top layer. Heterogeneous sediments significantly affected root distribution pattern. Compared with the treatments of sandy loam in the bottom layer, root number (7–8 versus 13–14) and total root length (3.6–4.0 cm versus 29.5–40.0 cm) in the bottom layer were significantly higher in the treatments with clay in the bottom layer. These results indicate that both sediment structure and nutrient availability influence growth and root system distribution of V. natans.  相似文献   

10.
Feng Li  Yonghong Xie   《Aquatic Botany》2009,91(3):219-223
The aim of this study is to identify how submerged macrophyte Vallisneria spiralis acclimate to sedimentation by investigating the growth, biomass allocation and clonal characteristics in a greenhouse experiment of 30 days. Experimental treatments combined two sediment types (mud and sand) with four sedimentation depths (0, 2, 4 and 8 cm) in a factorial design. Biomass accumulation (0.98–1.33 versus 0.36 g per plant) and relative growth rate (RGR, 0.082–0.093 versus 0.046 g g−1 day−1) decreased only in the 8 cm sand treatment. Neither sedimentation depth nor sediment type influenced biomass allocation. The ratio of spacer length to biomass was significantly higher in the 8 cm sand (20.4 cm g−1) than in other treatments (6.0–8.5 cm g−1). Branching angles and the depths between ramet basal and sediment surface were only affected by sedimentation depth. Clonal ramets developed nearly vertical branching angles (ranged from 78° to 101°) in the 0 cm sedimentation treatment, but the angles of treated plants decreased at the initial 3–5 ramets (ranged from 68° to 78° at the first ramet level), then remained a relatively constant value (about 90°) in the following spacers. These data indicate that plagiotropic stolons were formed to project the ramets to sediment surface and to escape sedimentation stress primarily by elongating spacer length and decreasing branching angle, rather than by adjusting biomass allocation.  相似文献   

11.
In managed settings, seedlings are often fertilized with the objective of enhancing establishment, growth, and survival. However, responses of seedlings to fertilization can increase their susceptibility to abiotic stresses such as drought. Seedlings acclimate to variation in soil resources by reallocating carbon among different physiological processes and compartments, such as above versus belowground growth, secondary metabolism, and support of ectomycorrhizal fungi (EMF). We examined the effects of nutrient and water availability on carbon allocation to above and belowground growth of river birch (Betula nigra), as well as partitioning among root sugars, starch, phenolics, lignin, and EMF abundance. As nutrient availability increased, total plant biomass and total leaf area increased, while percent root biomass decreased. Root sugars, total root phenolics and EMF abundance responded quadratically to nutrient availability, being lowest at intermediate fertility levels. Decreased water availability reduced total leaf area and root phenolics relative to well-watered controls. No interactions between nutrient and water availability treatments were detected, which may have been due to the moderate degree of drought stress imposed in the low water treatment. Our results indicate that nutrient and water availability significantly alter patterns of carbon allocation and partitioning in roots of Betula nigra seedlings. The potential effects of these responses on stress tolerance are discussed.  相似文献   

12.
马赟花  张铜会  刘新平 《生态学报》2013,33(21):6984-6991
本文在半干旱区科尔沁沙地研究沙地芦苇生长发育对地下水位改变的响应。通过比较不同地下水位深度下沙地芦苇生态特征,结果表明:与对照相比,0-200cm的水位条件更利于沙地芦苇的生长。但是这种生长特点随着水位深度不同而有所差异。具体表现为40-120cm的水位条件下沙地芦苇的根冠比和垂直根长都随着水位深度的增加而逐渐增加,当地下水位大于120cm时根冠比的趋势则相反;根长密度值则表现出在0-120cm水位条件下的要大于120-200cm水位条件下的;而40cm的浅水位表现出了对沙地芦苇生长的抑制作用,即在这种水位条件下会抑制沙地芦苇的蒸腾光合作用、减小叶面积的增长,但是其最终的株高叶面积及生物量仍表现出优于对照的生长状况。  相似文献   

13.
《Aquatic Botany》2007,86(3):213-222
Melaleuca ericifolia Sm. (Swamp paperbark) is a common tree species in freshwater and brackish wetlands in southern and eastern Australia. The survival of this species in many wetlands is now threatened by increased salinity and inappropriate water regimes. We examined the response of 5-month-old M. ericifolia seedlings to three water depths (exposed, waterlogged and submerged) at three salinities (2, 49 and 60 dS m−1). Increasing water depth at the lowest salinity did not affect survival, but strongly inhibited seedling growth. Total biomass, leaf area and maximum root length were highest in exposed plants, intermediate in waterlogged plants and lowest in submerged plants. Although completely submerged plants survived for 10 weeks at the lowest salinity, they demonstrated negative growth rates and were unable to extend their shoots above the water surface. At the higher salinities, M. ericifolia seedlings were intolerant of waterlogging and submergence: all plants died after 9 weeks at 60 dS m−1. Soil salinities increased over time, and by Week 10, exceeded external water column salinities in both the exposed and waterlogged treatments. In exposed sediment, ∼90% of plants survived for 10 weeks at 60 dS m−1 even though soil salinities reached ∼76 dS m−1. No mortality occurred in the exposed plants at 49 dS m−1, and small but positive relative growth rates were recorded at Week 10. We conclude that at low salinities M. ericifolia seedlings are highly tolerant of sediment waterlogging, but are unlikely to tolerate prolonged submergence. However, at the higher salinities, M. ericifolia seedlings are intolerant of waterlogging and submergence and died rapidly after 5 weeks exposure to this combination of environmental stressors. This research demonstrates that salinity may restrict the range of water regimes tolerated by aquatic plants.  相似文献   

14.
Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.  相似文献   

15.

Background and aims

The ability of modifying biomass allocation to deal with different environmental stress is an important mechanism for plant population expansion and maintenance in the unstable dune environment where wind erosion persists. However, how biomass is partitioned between horizontal rhizome extension and vertical ramet growth in response to wind erosion has not been fully understood. The objective of this study was to explore how wind erosion affected the relationship between horizontal rhizome extension and vertical ramet growth using a common rhizomatous perennial grass, Phragmites communis.

Methods

We dug 300 cm?×?200 cm, 80 cm deep pits in a garden experiment plot. Clonal fragments of P. communis were planted individually at a depth of 40 cm in these pits for 4 weeks before treatments. Surface sand was gradually removed to the final depth of 0 (control), 10, 20, 30 and 40 cm (maximum sand removal). Ramet emergence time, rhizome-based and tiller-based ramet number, rhizome number and length, biomass of vertically and horizontally oriented structures were monitored at the end of the experiment.

Results

With increasing erosion depth, the proportion of tiller-based ramets (in total number of ramets) increased, whereas that of rhizome-based ramets decreased. With increasing erosion depth, the percentage of vertically oriented structures biomass in total biomass increased significantly, whereas that of horizontally oriented structures biomass decreased.

Conclusions

The changes in biomass allocation (i.e., more allocation in vertical than horizontal biomass) together with a trade-off in tiller-based and rhizome-based ramets may enable P. communis to make better use of the resources in erosion conditions and maximize plant population expansion and maintenance.  相似文献   

16.
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.  相似文献   

17.
Water regime can be described by the depth, duration, frequency, and timing and predictability of flooded and dry phases. Despite growing recognition of the importance of water regimes in the regulation of plant growth and distribution, which components of water regimes that determine plant growth are not well known. To identify the causative components, 72 ramets of Carex brevicuspis were grown under six different water regime treatments (treatment A: constant 0 cm water level; treatment B: constant 30 cm water level; treatment C: 0 cm water level to 30 cm water level for 30 days, repeated 2 times; treatment D: 30 cm water level to 0 cm water level for 30 days, repeated 2 times; treatment E: 0 cm water level to 30 cm water level for 5 days, repeated 12 times; and treatment F: 30 cm water level to 0 cm water level for 5 days, repeated 12 times). Biomass accumulation, below:above ground biomass ratio, number of ramets, and proportions of spreading and clumping ramet were assessed. Biomass accumulation decreased only in relation to length of flooding. The highest biomass accumulation occurred in the 120‐day + 0 cm water level treatment, it was intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. Likewise, the below:above ground ratio decreased only with increasing length of flooding. Ramet number was highest in the 120 day + 0 cm water level treatment, intermediate in the four 60 day + 30 cm water level treatments, and lowest in the 120 day + 30 cm water level treatment. The proportion of spreading ramets increased from 28.0% in the 120 day + 0 cm water level treatment to 76.4% in the 120 day + 30 cm water level treatment. These data suggest that the growth of C. brevicuspis was only limited by the duration of flooding. Reduction of the below:above ground ratio and change from phalanx to guerrilla growth form are effective strategies for C. brevicuspis to acclimate to flooding stress, because they allow the plant to grow above the water surface and escape from anoxic conditions. Our study provides experimental information on the role of different components of water regimes in regulating plant growth, and may assist in protection and restoration of the C. brevicuspis community.  相似文献   

18.
Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.  相似文献   

19.
Root biomass, root nitrogen content, and root distribution down to 50 cm depth in winter wheat were determined by soil coring on five dates in four different treatments: control (C), drought (D), daily irrigation (I), and daily irrigation and fertilization (IF). The first three treatments received the N fertilizer application as a single dose in spring, whereas in IF daily doses of N were supplied in the irrigation water using a drip-tube system, according to the estimated nutrient demand of the crop. All treatments received 20 g N m−2 year−1. The maximum root biomass (104 g m−2) was reached earliest in IF. On 6 June, root samples were taken down to a depth of 100 cm, and the proportion of deep roots (50–100 cm) was least in I, indicating that it had the shaklowest root system. The root biomass as a fraction of the total plant mass decreased during crop development in all treatments down to about 4% at harvest. The decrease was more rapid in I and C than in D and IF. The higher proportion of roots during spring in D and IF coincided with a low nitrogen concentration in the roots, which was attributed to the restricted water supply and to the relative shortage of nitrogen during early crop development in D and IF, respectively. The dynamics of mass and nitrogen in macroscopic organic debris in the soil suggested that root turnover rates were high. ei]{gnB E}{fnClothier}  相似文献   

20.
《Aquatic Botany》2001,69(2-4):147-164
Colonisation by reed seedlings, Phragmites australis (Cav.) Trin. ex Steud. is rare and usually occurs after drawdown and when shallow water prevails. P. australis seeds have high rates of germination but successful colonisation is dependent upon subsequent water depths. We investigated the capacity of young reed plants to resist a 4 weeks submergence stress within a 5 months period, and their subsequent recovery. A pond experiment examined the interactions between submergence depth and the age of the seedlings at submergence. Four submergence treatments were used. In two partial submergence treatments, 50 and 80% of the initial leaf area was submerged. In two total submergence treatments, plants were either submerged at 125% of their initial height with possible subsequent development of emerged leaves, or the water was deepened as they grew to maintain total submergence for 4 weeks. The ages at submergence were 40, 60 and 80 days. Plants were harvested at 5 months. Shoot elongation, biomass allocations to aerial biomass, roots and rhizomes, and photosynthetic activity of aerial leaves were measured. Redox potential was measured for a subsample.Mortality (18.7%) occurred only in the permanent submergence treatment for 40-day-old seedlings. In all treatments, submerged leaves senesced, except the terminal (youngest) leaves of permanently submerged plants. Submergence differentially affected shoot length and biomass, depending upon the intensity of the treatment and the seedling age. The major differences were found between the two partial and two total submergence treatments. Partial submergence (50 and 80%) significantly enhanced biomass accumulation and growth, whereas total submergence largely decreased biomass production and growth in length, with less effect on shoot numbers. The 80-day-old seedlings tolerated submergence better but growth was poorest in medium-aged plants (60-day-old). Increased elongation of the growing internodes of up to 140% was caused by submergence, and photosynthetic activity was enhanced by 85% in emergent leaves of plants initially submerged but allowed to produce emerged leaves during the treatment period.Young P. australis plants require shallow water levels without long lasting submergence to grow and survive. Tolerance to submergence increases with age. These processes contribute to define the conditions for colonisation via seeds in P. australis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号