首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART resistance.  相似文献   

2.
Abstract

Ferriprotoporphyrin IX (FP) is released inside the food vacuole of the malaria parasite during the digestion of host cell hemoglobin. FP is detoxified by its biomineralization to hemozoin. This process is effectively inhibited by chloroquine (CQ) and amodiaquine (AQ). Undegraded FP accumulates in the membrane fraction and inhibits enzymes of infected cells in parallel with parasite killing. FP is demonstrably degraded by reduced glutathione (GSH) in a radical-mediated mechanism. This degradation is inhibited by CQ and AQ in a competitive manner, thus explaining the ability of increased GSH levels in Plasmodium falciparum-infected cells to increase resistance to CQ and vice versa, and to render Plasmodium berghei that were selected for CQ resistance in vivo sensitive to the CQ when glutathione synthesis is inhibited. Some over-the-counter drugs that are known to reduce GSH in body tissues when used in excess were found to enhance the antimalarial action of CQ and AQ in mice infected either with P. berghei or Plasmodium vinckei. In contrast, N-acetyl-cysteine which is expected to increase the cellular levels of GSH, antagonized the action of CQ. These results suggest that some over-the-counter drugs can be used in combination with some antimalarials to which the parasite has become resistant.  相似文献   

3.
Antiretroviral protease inhibitors significantly potentiated the sensitivity of chloroquine-resistant malaria parasites to the antimalarial drug in vitro and in vivo. Ritonavir was found to be potent in potentiating CQ antimalarial activities in both -resistant and -sensitive lines. The mechanism by which the APIs modulate the CQ resistance in malaria parasites was further investigated. CQ-resistant parasites showed increased intracellular glutathione levels in comparison with the CQ-sensitive parasites. Treatment with APIs significantly reduced the levels of GSH and glutathione S-transferase activities in CQ-resistant parasites. Ritonavir also decreased glutathione reductase activities and glutathione peroxidase activities in CQ-resistant parasite line. Taken together, these results demonstrate that parasite GSH and GST may play an important role in CQ resistance and APIs are able to enhance the sensitivity of CQ-resistant malaria parasite to the drug by influencing the levels of GSH and the activities of the related enzymes.  相似文献   

4.
The aim of the present study was to investigate antimalarial drug pressure resulting from the clinical use of different antimalarials in Thailand. The phenotypic diversity of the susceptibility profiles of antimalarials, i.e., chloroquine (CQ), quinine (QN), mefloquine (MQ), and artesunate (ARS) in Plasmodium falciparum isolates collected during the period from 1988 to 2003 were studied. P. falciparum isolates from infected patients were collected from the Thai-Cambodian border area at different time periods (1988-1989, 1991-1992, and 2003), during which 3 different patterns of drug use had been implemented: MQ + sulphadoxine (S) + pyrimethamine (P), MQ alone and MQ + ARS, respectively. The in vitro drug susceptibilities were investigated using a method based on the incorporation of [3H] hypoxanthine. A total of 50 isolates were tested for susceptibilities to CQ, QN, MQ, and ARS. Of these isolates, 19, 16, and 15 were adapted during the periods 1988-1989, 1991-1993, and 2003, respectively. P. falciparum isolates collected during the 3 periods were resistant to CQ. Sensitivities to MQ declined from 1988 to 2003. In contrast, the parasite was sensitive to QN, and similar sensitivity profile patterns were observed during the 3 time periods. There was a significantly positive but weak correlation between the IC50 values of CQ and QN, as well as between the IC50 values of QN and MQ. Drug pressure has impact on sensitivity of P. falciparum to MQ. A combination therapy of MQ and ARS is being applied to reduce the parasite resistance, and also increasing the efficacy of the drug.  相似文献   

5.
Abstract

New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

6.
Ferriprotoporphyrin IX (FP) is released inside the food vacuole of the malaria parasite during the digestion of host cell hemoglobin. FP is detoxified by its biomineralization to hemozoin. This process is effectively inhibited by chloroquine (CQ) and amodiaquine (AQ). Undegraded FP accumulates in the membrane fraction and inhibits enzymes of infected cells in parallel with parasite killing. FP is demonstrably degraded by reduced glutathione (GSH) in a radical-mediated mechanism. This degradation is inhibited by CQ and AQ in a competitive manner, thus explaining the ability of increased GSH levels in Plasmodium falciparum-infected cells to increase resistance to CQ and vice versa, and to render Plasmodium berghei that were selected for CQ resistance in vivo sensitive to the CQ when glutathione synthesis is inhibited. Some over-the-counter drugs that are known to reduce GSH in body tissues when used in excess were found to enhance the antimalarial action of CQ and AQ in mice infected either with P. berghei or Plasmodium vinckei. In contrast, N-acetyl-cysteine which is expected to increase the cellular levels of GSH, antagonized the action of CQ. These results suggest that some over-the-counter drugs can be used in combination with some antimalarials to which the parasite has become resistant.  相似文献   

7.
The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world.  相似文献   

8.
Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito.  相似文献   

9.
We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED90) of PQ and LM against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 passages), the selected parasite lines had PQ and LM resistance indexes (I90) [ED90 of resistant line/ED90 of parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages and cryo-preserving them at −80 °C for at least 2 months, the resistance phenotypes remained stable. Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resistant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plasmodium falciparum, the use of LM (as part of Coartem®) should not select for PQ resistance.  相似文献   

10.
Chemotherapy of rodent malaria: transfer of resistance vs mutation   总被引:1,自引:0,他引:1  
Pyrimethamine-resistant strains of Plasmodium berghei and P. vinckei were produced by exposing populations of erythrocytic parasites to the selection pressure of increasing doses of drug as well as by single-step mutations. Pyrimethamine-sensitive parasites of both rodent plasmodia were found to mutate at a rate of 1–2 × 10?11 when exposed to a single course of drug therapy, consisting of 15 mg/kg/day for 4 consecutive days, given subcutaneously. Resistance obtained by either method, was found to be stabile for at least 40 passages in the absence of drug pressure, the longest number of passages tested. Parasites exposed to 15 mg/ kg/day were also found to be resistant to 160 mg/kg/day, the maximum dose of pyrimethamine tolerated by the rodent host.Plasmodium berghei chloroquine-sensitive parasites were found to have a mutation rate of 1.5 × 10?10, when exposed to a single course of chloroquine therapy, consisting of 30 mg/kg/day chloroquine base given for 4 consecutive days, subcutaneously. These parasites were also found to be resistant to 60 mg/kg/day the highest dose of chloroquine tolerated by the rodent host. Chloroquine-resistant strains of P. vinckei could not be developed by a single-step mutation nor by selection by slow increases in drug pressure.Pyrimethamine-resistant strains of P. berghei, whether, the resistance was developed by single-step mutation, or by slowly increasing the pyrimethamine doses over extended periods of time, demonstrated dihydrofolate reductases which were similar in activity, Michaelis constants, and inability to be stimulated by increased concentrations of KCl. The same was found to be true for the dihydrofolate reductases (EC 1.5.1.3) isolated from pyrimethamine-resistant P. vinckei strains. The enzymes isolated from the resistant strains differed in all respects from their sensitive counterparts.Attempts at drug resistance-transfer, using both a biological filter system, and a dual drug resistant system, were both unsuccessful. The origin of all drug resistant strains studied and reported in this paper, can best be explained by the occurrence of mutation, most probably involving the change of a single nucleotide base in the DNA.  相似文献   

11.
A high level of chloroquine resistance was developed in the rodent malaria parasite, Plasmodium chabaudi. This resistance was stable and its inheritance was shown to be multigenic; intermediate levels of resistance were obtained from a cross between highly resistant and sensitive parasites. Chloroquine resistance was shown to segregate independently of pyrimethamine resistance and enzyme markers.  相似文献   

12.
The rapid emergence of multidrug-resistant Plasmodium falciparum is a worldwide concern. Despite the magnitude of the problem, the mechanisms involved in this phenomenon are not well understood. One current proposal suggests that toxic heme molecules are degraded by glutathione (GSH), and that anti-malarial drugs, such as chloroquine (CQ), inhibit this degradation, thus implicating GSH in drug resistance. Furthermore, in some strains of Plasmodium berghei and P. falciparum, chloroquine resistance is accompanied by an increase in glutathione levels and increased activity in GSH-related enzymes. We are investigating the relationship between the gamma-glutamylcysteine synthetase (ggcs) gene, the rate-limiting enzyme in de novo synthesis of GSH, and drug resistance in P. berghei at the molecular level. In this report, we have demonstrated an increase in pbggcs mRNA levels associated with CQ and mefloquine (MFQ) resistance. In addition, the pbggcs gene locus structure was shown to be similar and localized to chromosome 8 in four parasite lines of P. berghei with different drug resistance profiles. This work suggests a link between increased GSH levels and drug resistance in Plasmodium.  相似文献   

13.
Tritiated Clindamycin was used to compare the uptake of Clindamycin in plasma and red cells of mice infected with clindamycin-sensitive or clindamycin-resistant Plasmodium berghei and in uninfected mice. Red cells infected with either sensitive or resistant parasites have a higher concentration of [3H]clindamycin and its active metabolites 1 hr after drug administration than uninfected red blood cells. There was no significant difference in uptake of Clindamycin by red blood cells parasitized by sensitive or resistant parasites. Levels of Clindamycin and its metabolites were consistently higher in red cells than in plasma, both in infected and uninfected mice, but the drug was readily removed by washing red cells with phosphate buffered saline in either case. It is concluded that resistance to Clindamycin is not due to an impaired uptake of the drug by the parasitized red cell as has been shown for chloroquine resistance in P. falciparum and P. berghei.  相似文献   

14.
Chloroquine (CQ) resistant vivax malaria is spreading. In this case, Plasmodium vivax infections during pregnancy and in the postpartum period were not satisfactorily cleared by CQ, despite adequate drug concentrations. A growth restricted infant was delivered. Poor susceptibility to CQ was confirmed in-vitro and molecular genotyping was strongly suggestive of true recrudescence of P. vivax. This is the first clinically and laboratory confirmed case of two high-grade CQ resistant vivax parasite strains from Thailand.  相似文献   

15.
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.  相似文献   

16.
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79?nM against Pf K1 and 3.2?nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.  相似文献   

17.
Increase in drug detoxification and alteration of drug uptake and efflux of Plasmodium falciparum were investigated for their possible association with mefloquine (MQ) resistance in five different clones of P. falciparum from Thailand (T994b3, K1CB2, PR70CB1, PR71CB2 and TM4CB8-2.2.3). Fifty percent inhibitory concentration (IC50) values from these five clones varied between 30- and 50-fold. Regarding the detoxification mechanism, the ability of P. falciparum clones to biotransform MQ was shown in vitro by parasite microsomal protein prepared from parasite infected red blood cells protein (30 μg), NADPH (1 nM) and phosphate buffer pH 7.4, carried out at 37 °C with agitation. Radiolabelled unmetabolized MQ and possible metabolite(s) generated from the reaction was extracted into ethylacetate and separated by radiometric-HPLC after 1 h. All clones were capable of converting MQ into carboxymefloquine (CMQ), which is the main metabolite in human plasma. In addition, another unidentified metabolite eluted at 4.2 min on the chromatograph could be detected from the incubation reaction. This metabolite has never been detected in human liver microsomes before. There was no significant difference in the percentages of CMQ formed in the resistant (T994b3, PR70CB1, PR71CB2) and sensitive (TM4CB8-2.2.3, K1CB2) clones. Another possible mechanism, i.e., alteration in the accumulation of MQ in the parasites was investigated in vitro using [14C]MQ as a tracer. The time courses of [14C]MQ uptake and efflux were generally characterized by two phases. A trend of increased efflux of [14C]MQ was observed in the resistant compared with sensitive clones.  相似文献   

18.
The effects of tricyclic antidepressants, desipramine and imipramine, and phenothiazines, chlorpromazine and trifluoperazine, on chloroquine (CQ)-resistant and CQ-sensitive lines of P. chabaudi were examined in vivo. In mice that received daily injections of these drugs the growth of CQ-resistant and CQ-sensitive parasites was unaffected or affected very slightly, if at all. A combination of CQ and each drug suppressed the growth of CQ-resistant parasites in a dose-dependent manner. In addition, in CQ-sensitive parasites each drug also increased the susceptibility to CQ. Measurements of CQ levels by high-performance liquid chromatography showed that CQ accumulated in sensitive parasites to more than twice the level in resistant parasites at 2 to 4 hr after an injection of CQ. Verapamil and desipramine substantially increased CQ levels in both CQ-resistant and CQ-sensitive parasites. These results suggest that not only Ca2+ antagonists but tricyclic antidepressants reverse CQ resistance in CQ-resistant parasites and enhance the inhibitory effect in sensitive parasites by increasing CQ levels in those parasites. The effects of Ca2+ antagonists, tricyclic antidepressants, and phenothiazines on a pyrimethamine-resistant line of P. chabaudi were also studied. None of the Ca2+ antagonists (verapamil, nicardipine, and diltiazem) affected the growth of the parasite in combination with 20 mg/kg pyrimethamine. Tricyclic antidepressants and phenothiazines suppressed pyrimethamine-resistant parasites to some extent. However, the extent of this suppression was less pronounced as compared with that of suppression of CQ resistance by the same drugs.  相似文献   

19.
20.
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号