首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用RAPD标记构建美洲黑杨×欧美分子标记连锁图谱   总被引:25,自引:3,他引:22  
本文利用RAPD标记和美洲黑杨(Populus deltoides)×欧美杨(P.euramericana)的F1群体,构建了美洲黑杨×欧美杨的分子标记连锁图谱。实验过程中对1040个寡核苷酸随机引物进行了重复筛选,共选出127个引物用于作图群体(包括双亲共92个无性系)的随机扩增,这127个引物产生229个多态基因座,其中符合“拟测交”1∶1分离的有214个。利用多点连锁分析,形成19个连锁群及6个三连体和14个连锁对。由19个连锁群构成的图谱含标记129个,总图距为1914.2cM,覆盖杨树基因组约73.62%。标记间的平均间距为14.84cM。本研究获得了中等密度的美洲黑杨×欧美杨的一个连锁框架。 Abstract:A molecular linkage map was constructed for the parents of a P.deltoides × P.euramericana F1 family based on random amplified polymorphic DNA(RAPD)markers.A set of 1040 random oligonucleotide primers were screened and 127 primers were selected to generate RAPD markers within a sample of 90 F1 progenies.A total of 229 segregating loci were identified.Among the 229 loci,15 loci were found distorted from the normal 1∶1 ratio.Using multiple analysis,the 214 markers formed 19 main Linkage groups (including 129 markers)and b triples and 14 pairs.The resulting Linkage map of Populus deltoides × P.euramericana (including 129 markers)spanned 1914.2cM(73.62% coverage of genome length)with an average distance of 14.84cM between markers.  相似文献   

2.
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits.  相似文献   

3.
rhm1 is a major recessive disease resistance locus for Southern corn leaf blight (SCLB).To further narrow down its genetic position,F 2 population and BC 1 F 1 population derived from the cross between resistant (H95 rhm) and susceptible parents (H95) of maize (Zea mays) were constructed.Using newly developed markers,rhm1 was initially delimited within an interval of 2.5 Mb,and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149-1.Three polymorphic markers IDP961-504,IDP B2-3 and A194149-2 were shown to be co-segregated with the rhm1 locus.Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1).Comparative sequence analysis indicated that the LHT1 in H95 rhm harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73,H95 and Mo17.The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95 rhm).Our results strongly suggest LHT1 as the candidate gene for rhm1 against SCLB.The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.  相似文献   

4.
A rice mutant with rolling leaf, namely γ-rl, was obtained from M2 progenies of a native indica rice stable strain Qinghuazhan (QHZ) from mutagenesis of dry seeds by γ-rays. Genetic analysis using the F2 population from a cross between this mutant and QHZ indicated the mutation was controlled by a single recessive gene. In order to map the locus for this mutation, another F2 population with 601 rolling leaf plants was constructed from a cross between y-rl and a japonica cultivar 02428. After primary mapping with SSR (simple sequence repeats) markers, the mutated locus was located at the short arm of chromosome 3, flanked by RM6829 and RM3126. A number of SSR, InDel (insertion/deletion) and SNP (single nucleotide polymorphism) markers within this region were further developed for fine mapping. Finally, two markers, SNP121679 and InDe1422395, were identified to be flanked to this locus with genetic distances of 0.08 cM and 0.17 cM respectively, and two SNP markers, SNP75346 and SNPl10263, were found to be co-segregated with this locus. These results suggested that this locus was distinguished from all loci for the rolling leaf mutation in rice reported so far, and thus renamed rl10(t). By searching the rice genome database with closely linked markers using BLAST programs, an e-physical map covering rl10(t) locus spanning about a 50 kb region was constructed. Expression analysis of the genes predicted in this region showed that a gene encoding putative flavin-containing monooxygenase (FMO) was silenced in γ-rl, thus this is the most likely candidate responsible for the rolling leaf mutation.  相似文献   

5.
A barley yellow dwarf virus (BYDV)-resistant line HG295 was selected from a cross between cv. 77-5433 and Zhong 5 after extensive investigation in field, greenhouse and ELISA. Cytological analysis revealed that it was an euploid line and genetically stable. The existence of alien DNA in HG295 was identified by RAPD and Southern hybridization analyses showed that the alien DNAs came from Zhong 5 or Th. intermedium. The differences of BYDV resistance between L1 and HG295 are discussed.  相似文献   

6.
Restoration of cytoplasmic male sterility (CMS) in sunflower was demonstrated to be controlled by polygenes by analysing 982 effective crosses among 109 self-crossed lines and 16 CMS lines. Two self-crossed lines and one CMS line with distinct genotypes were applied to creation of segregating populations for DNA bulks of the target gene Rfl. Bulked DNA was prepared in order to investigate single gene Rfl and its gene marker among polygenic characters at the same genetic background. Using 80 10-mer operon primers, 620 RAPD reactions were carried out between fertile and sterile DNA bulks. In about 800 loci, primary results showed that 8 were related to the restoration genes. Furthermore. 2 were confirmed as RAPD markers for gene Rfl by examining 9 maintenance and 7 restoration lines. This method is the improvement for bulked segregant analysis[1] with which markers of single gene of target can be identified rapidly among polygenic characters.  相似文献   

7.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), 1 (Yellow inhibitor) and C ( Outer-layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C 108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

8.
We have recently cloned a pathogen inducible blast resistance gene Pi-kh from the indica rice line Tetep using a positional cloning approach. In this study, we carried out structural organization analysis of the Pi-kh locus in both indica and japonica rice lines. A 100 kb region containing 50 kb upstream and 50 kb down- stream sequences flanking to the Pi-kh locus was selected for the investigation. A total of 16 genes in indica and 15 genes in japonica were predicted and anno- tated in this region. The average GC content of indica and japonica genes in this region was 53.15% and 49.3%, respectively. Both indica and japonica sequences were polymorphic for simple sequence repeats having mono-, di-, tri-, tetra-, and pentanucleotides. Sequence analysis of the specific blast resistant Pi-kh allele of Tetep and the susceptible Pi-kh allele of the japonica rice line Nipponbare showed differences in the number and distribution of motifs involved in phosphorylation, resulting in the resistance phenotype in Tetep.  相似文献   

9.
Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. In order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length poiymorphism (AFLP), sequence-related amplified poiymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotypic variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.  相似文献   

10.
牛血清白蛋白在植物RAPD分析中的作用   总被引:39,自引:0,他引:39  
边才苗  李钧敏  金则新  葛明菊 《遗传》2002,24(3):279-282
以水杉、七子花DNA为模板,添加牛血清白蛋白(BSA),观察其对植物RAPD扩增效果的改善情况。研究显示,在水杉及七子花RAPD扩增体系中,改善RAPD扩增反应的最佳的BSA浓度是不同的,分别为06μg/μl与1μg/μl。另外,BSA还可以封闭乙酰BSA对RAPD扩增反应的抑制作用,降低RAPD反应系统中Taq酶的用量。 Abstract:Using Metasequoia glyptostroboides and Heptacodium miconioides DNA as templates,the effect of bovine serum albumin(BSA) on RAPD in plants was studied.The results showed that suitable concentrations of BSA used in Metasequoia glyptostroboides and Heptacodium miconioides RAPD were different,which were 06μg/μl and 1μg/μl,respectively.The inhibition of acetylated BSA on the amplification of plant RAPD could be relieved by BSA.BSA could reduce the dosage of Taq DNA polymerase.  相似文献   

11.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

12.
The Yr17 gene, which is present in many European wheat cultivars, displays yellow rust resistance at the seedling stage. The gene introduced into chromosome 2A from Aegilops ventricosa was previously found to be closely linked (0.5 cM) to leaf and stem rust resistance genes Lr37 and Sr38, respectively. The objective of this study was to identify molecular markers linked to the Yr17 gene. We screened with RAPD primers, for polymorphism, the DNAs of cv. Thatcher and the leaf rust-resistant near-isogenic line (NIL) RL 6081 of cv. Thatcher carrying the Lr37 gene. Using a F2 progeny of the cross between VPM1 (resistant) and Thésée (susceptible), the RAPD marker OP-Y15580 was found to be closely linked to the Yr17 gene. We converted the OP- Y15580 RAPD marker into a sequence characterized amplified region (SCAR). This SCAR marker (SC-Y15) was linked at 0.8 ± 0.7 cM to the Yr17 resistance gene. We tested the SC-Y15 marker over a survey of 37 wheat cultivars in order to verify its consistency in different genetic backgrounds and to explain the resistance of some cultivars against yellow rust. Moreover, we showed that the Xpsr150-2Mv locus marker of Lr gene described by Bonhomme et al. [6] which possesses A. ventricosa introgression on the 2A chromosome was also closely linked to the Yr17 gene. Both the SCAR SC-Y15 and Xpsr150-2Mv markers should be used in breeding programmes in order to detect the cluster of the three genes Yr17, Lr37 and Sr38 in cross progenies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Physical mapping of the barley stem rust resistance gene rpg4   总被引:5,自引:0,他引:5  
The barley stem rust resistance gene rpg4 was physically and genetically localized on two overlapping BAC clones covering an estimated 300-kb region of the long arm of barley chromosome 7(5H). Initially, our target was mapped within a 6.0-cM region between the previously described flanking markers MWG740 and ABG391. This region was then saturated by integrating new markers from several existing barley and rice maps and by using BAC libraries of barley cv. Morex and rice cv. Nipponbare. Physical/genetic distances in the vicinity of rpg4 were found to be 1.0 Mb/cM, which is lower than the average for barley (4 Mb/cM) and lower than that determined by translocation breakpoint mapping (1.8 Mb/cM). Synteny at high resolution levels has been established between the region of barley chromosome 7(5H) containing the rpg4 locus and the subtelomeric region of rice chromosome 3 between markers S16474 and E10757. This 1.7-cM segment of the rice genome was covered by two overlapping BAC clones, about 250 kb of total length. In barley the markers S16474 and E10757 genetically delimit rpg4, lying 0.6 cM distal and 0.4 cM proximal to the locus, respectively.  相似文献   

14.
A new bacterial blight recessive resistance gene xa34(t) was identified from the descendant of somatic hybridization between an aus rice cultivar (cv.) BG1222 and susceptible cv. IR24 against Chinese race V (isolate 5226). The isolate was used to test the resistance or susceptibility of F1 progenies and reciprocal crosses of the parents. The results showed that F1 progenies appeared susceptibility there were 128R (resistant):378S (susceptible) and 119R:375S plants in F2 populations derived from two crosses of BG1222/IR24 and IR24/BG1222, respectively, which both calculates into a 1R:3S ratio. 320 pairs of stochastically selected SSR primers were used for genes?? initial mapping. The screened results showed that two SSR markers, RM493 and RM446, found on rice chromosome 1 linked to xa34(t). Linkage analysis showed that these two markers were on both sides of xa34(t) with the genetic distances 4.29 and 3.05?cM, respectively. The other 50 SSR markers in this region were used for genes?? fine mapping. The further results indicated that xa34(t) was mapped to a 1.42?cM genetic region between RM10927 and RM10591. In order to further narrow down the genomic region of xa34(t), 43 of insertion/deletion (Indel) markers (BGID1-43) were designed according to the sequences comparison between japonica and indica rice. Parents?? polymorphic detection and linkage assay showed that the Indel marker BGID25 came closer to the target gene with a 0.4?cM genetic distance. A contig map corresponding to the locus was constructed based on the reference sequences aligned by the xa34(t) linked markers. Consequently, the locus of xa34(t) was defined to a 204?kb interval flanked by markers RM10929 and BGID25.  相似文献   

15.
We have identified, genetically mapped and physically delineated the chromosomal location of a new rice blast resistance locus, designated Pi-CO39(t). This locus confers resistance to Magnaporthe grisea isolates carrying the AVR1-CO39 avirulence locus. The AVR1-CO39 locus is conserved in non-rice (cereals and grasses)-infecting isolates of M. grisea, making Pi-CO39(t) useful for engineering M. grisea resistance in rice and other cereals. The resistance in the rice line CO39 was inherited as a single dominant locus in segregating populations derived from F(2) and F(3) crosses between disease-resistant (CO39) and susceptible (51583) rice genotypes. Microsatellite, RFLP and resistance gene analog (RGA) markers were used to map the Pi-CO39(t) locus to a 1.2-cM interval between the probenazole-responsive ( RPR1) gene (0.2 cM) and RFLP marker S2712 (1.0 cM) on the short arm of rice chromosome 11. RFLP markers G320 and F5003, and resistance gene analogs RGA8, RGA38 and RGACO39 were tightly linked to the Pi-CO39(t) locus (no recombination detected in a sample of ~2400 gametes). A large-insert genomic library of CO39 was constructed in the binary plant transformation vector pCLD04541. A library screen using RGA8, RGA38 and probes derived from the ends of CO39 clones, as well as BAC end probes from the corresponding locus in the rice cv. Nipponbare, resulted in the assembly of three CO39 contigs of 180 kb, 110 kb and 145 kb linked to the Pi-CO39(t) locus. A 650-kb contig was also constructed representing the susceptible locus, pi-CO39(t), in the Nipponbare genome. The two genomes are highly divergent with respect to additions, deletions and translocations at the Pi-CO39(t) locus, as revealed by the presence or absence of mapping markers.  相似文献   

16.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

17.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

18.
Barley line Q21861 possesses an incompletely dominant gene (RphQ) for resistance to leaf rust caused by Puccinia hordei. To investigate the allelic and linkage relations between RphQ and other known Rph genes, F2 populations from crosses between Q21861 and donors of Rph1 to Rph14 (except for Rph8) were evaluated for leaf rust reaction at the seedling stage. Results indicate that RphQ is either allelic with or closely linked to the Rph2 locus. A doubled haploid population derived from a cross between Q21861 and SM89010 (a leaf rust susceptible line) was used for molecular mapping of the resistance locus. Bulked segregant analysis was used to identify markers linked to RphQ, using random amplified polymorphic DNAs (RAPDs), restriction fragment length polymorphisms (RFLPs), and sequence tagged sites (STSs). Of 600 decamer primers screened, amplified fragments generated by 9 primers were found to be linked to the RphQ locus; however, only 4 of them were within 10 cM of the target. The RphQ locus was mapped to the centromeric region of chromosome 7, with a linkage distance of 3.5 cM from the RFLP marker CDO749. Rrn2, an RFLP clone from the ribosomal RNA intergenic spacer region, was found to be very closely linked with RphQ, based on bulked segregant analysis. An STS marker, ITS1, derived from Rrn2, was also closely linked (1.6 cM) to RphQ.  相似文献   

19.
A L Bush  R P Wise  P J Rayapati  M Lee 《Génome》1994,37(5):823-831
Crown rust, perhaps the most important fungal disease of oat, is caused by Puccinia coronata. An examination of near-isogenic lines (NILs) of hexaploid oat (Avena sativa) was conducted to identify markers linked to genes for resistance to crown rust. These lines were created such that a unique resistance gene is present in each of the two recurrent parent backgrounds. The six NILs of the current study, X434-II, X466-I, and Y345 (recurrent parent C237-89) and D486, D494, and D526 (recurrent parent Lang), thus provide a pair of lines to study each of three resistance genes. Restriction fragment length polymorphisms and resistance loci were mapped using BC1F2 populations. Three markers were found linked to a locus for resistance to crown rust race 203, the closest at 1.9 cM in line D494 and 3.8 cM in line X466-I. In lines D526 and Y345 a marker was placed 1.0 and 1.9 cM, respectively, from the locus conferring resistance to crown rust race 345, and in D486 and X434-II a marker mapped at 8.0 and 10.2 cM from the locus for resistance to rust race 264B.  相似文献   

20.
Nb is a single dominant gene in potato that confers hypersensitive resistance to potato virus X (PVX) isolates from strain groups 1 and 2. Genetic and molecular analyses showed that Nb is located on the upper arm of chromosome V and forms part of a cluster of resistance genes encoding specificities to many different pathogens. We describe the genetical localisation of molecular markers tightly linked to the Nb locus and the development PCR-based markers suitable for isolation of the Nb resistance gene by positional cloning. A bulked segregant approach was applied to identify polymorphic AFLP markers tightly linked to the Nb locus. These markers were mapped in a population of segregating S1 progeny (1,300 plants) from a self-pollinated potato cultivar, Pentland Ivory. From this analysis, Nb was placed in an interval of 0.76 cM, flanked by the AFLP markers GM339 and GM637. Recombinant PVX strains carrying different combinations of avirulence genes were used in biological assays to show that Nb was also present in potato cv. Cara but was masked by the extreme PVX resistance conferred by the Rx gene. PCR-based screening of a Cara genomic BAC library with markers closest to the Nb locus identified a new marker tightly linked to Nb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号