首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

2.
This research was aimed at studying the acceleration of the catalytic activity of calcium oxide (CaO) for developing an effective heterogeneous catalyst for biodiesel production by the transesterification of plant oil with methanol. CaO was activated by pretreatment with methanol and was used for the transesterification reaction. The activation and transesterification reaction conditions were examined. The obtained optimal reaction conditions were 0.1-g CaO, 3.9-g methanol, 15-g rapeseed oil, and 1.5-h activation time at room temperature that provided methyl ester in approximately 90% yield within a reaction time of 3h at 60 degrees C. The activation mechanism was also investigated, and the proposed mechanism is as follows. By pretreatment with methanol, a small amount of CaO gets converted into Ca(OCH(3))(2) that acts as an initiating reagent for the transesterification reaction and produces glycerin as a by-product. Subsequently, a calcium-glycerin complex, formed due to the reaction of CaO with glycerin, functions as the main catalyst and accelerates the transesterification reaction.  相似文献   

3.
Transesterification of canola oil was carried out with methanol, ethanol, and various mixtures of methanol/ethanol, keeping the molar ratio of oil to alcohol 1:6 and using KOH as a catalyst. Mixtures of alcohol increased the rate of transesterification reaction and produced methyl as well as ethyl esters. The increased rate was result of better solubility of oil in reaction mixture due to better solvent properties of ethanol than methanol and equilibrium due to methanol. With 3:3 molar ratio of methanol to ethanol {MEE (3:3)} the amount of ethyl ester formed was 50% that of methyl ester. Properties (acid value, viscosity, density) of all esters including mixed esters were within the limits of ASTM standards. Lubricities of these esters are in the order: ethyl ester>methyl ethyl ester>methyl ester.  相似文献   

4.
The transesterification of soybean oil with methanol to methyl esters was carried out using NaX zeolites loaded with KOH as a solid base catalyst. Best result was obtained with NaX zeolite loaded with 10% KOH, followed by heating at 393 K for 3 h. When the transesterification reaction was carried out at reflux of methanol (338 K), with a 10:1 molar ratio of methanol to soybean oil, a reaction time of 8 h and a catalyst amount of 3 wt.%, the conversion of soybean oil was 85.6%.  相似文献   

5.
A low-intensity ultrasonic measurement system was used to monitor the products of transesterification of soybean oil in methanol to FAME (biodiesel). The byproducts of the transesterification reaction are methyl esters, glycerol and other products. During the transesterification reaction, the glycerol, having a higher density than the methyl ester, settles at the bottom of the reaction vessel. The aim of this study was to measure the glycerol deposition rate during transesterification and to assess the reaction rate and end time. Soybean oil was converted into biodiesel at four temperature levels. The amount of catalyst (KOH) used in the transesterification reactions was determined by titration. The ultrasonic waveforms captured during the reaction were recorded and analyzed automatically. The ultrasonic system monitored the effects of reaction temperatures on the glycerol settling rate and the reaction end times. The ultrasonic measurement of glycerol settling would be a useful non-destructive method for evaluating the effects of parameters such as catalyst amount, mixing time and temperature on transesterification reactions.  相似文献   

6.
Studies were carried out on transesterification of Karanja oil with methanol for the production of biodiesel. The reaction parameters such as catalyst concentration, alcohol/oil molar ratio, temperature, and rate of mixing were optimized for production of Karanja oil methyl ester (KOME). The fatty acid methyl esters content in the reaction mixture were quantified by HPLC and 1H NMR method. The yield of methyl esters from Karanja oil under the optimal condition was 97-98%.  相似文献   

7.
Wan Z  Hameed BH 《Bioresource technology》2011,102(3):2659-2664
In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190 °C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.  相似文献   

8.
In the conventional transesterification of fats/vegetable oils for biodiesel production, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. The objective of this study was, therefore, to investigate the effect of water on the yield of methyl esters in transesterification of triglycerides and methyl esterification of fatty acids as treated by catalyst-free supercritical methanol. The presence of water did not have a significant effect on the yield, as complete conversions were always achieved regardless of the content of water. In fact, the present of water at a certain amount could enhance the methyl esters formation. For the vegetable oil containing water, three types of reaction took place; transesterification and hydrolysis of triglycerides and methyl esterification of fatty acids proceeded simultaneously during the treatment to produce a high yield. These results were compared with those of methyl esters prepared by acid- and alkaline-catalyzed methods. The finding demonstrated that, by a supercritical methanol approach, crude vegetable oil as well as its wastes could be readily used for biodiesel fuel production in a simple preparation.  相似文献   

9.
Yang R  Su M  Zhang J  Jin F  Zha C  Li M  Hao X 《Bioresource technology》2011,102(3):2665-2671
Poly (sodium acrylate) supporting NaOH (NaOH/NaPAA) was prepared by in situ polymerization of aqueous solution of acrylic acid with an over-neutralization by adding excess of NaOH. NaOH/NaPAA presented a promising selectivity for water absorbency and good water retention with negligible swelling capacity in the organic solvents of methanol, glycerol, rubber seed oil methyl esters, and rubber seed oil. NaOH/NaPAA catalysts showed a basic strength of 15.0 < H_ < 18.4 and their basicity increased with the increase of the NaOH loading amount. NaOH/NaPAA catalysts exhibited almost the same catalytic activity in the transesterification of rubber seed oil with methanol under the optimized reaction conditions compared to conventional homogeneous NaOH catalyst. Furthermore, the functional absorbent/catalyst system presented a good water resistance in the transesterification which retained high catalytic activity when a water concentration in the reaction system was less than 2 wt.%.  相似文献   

10.
In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60 °C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号