首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
最原始的真核生物——源真核生物的核骨架   总被引:3,自引:0,他引:3  
利用选择性抽提 ,结合DGD包埋 去包埋剂和整装制样两种电镜技术以及Westernblot技术 ,对现存最原始的真核生物———源真核生物 (Archezoa)的核骨架进行了研究 .结果显示此类生物已具有了核骨架结构 ,其胞质中也具有了发达的中间纤维 ,且像高等真核细胞一样 ,此两者的纤维互相联系成一个统一的结构体系 ;但不具核仁骨架 ,其核纤层不典型或不发达 ,且只由一种相当于高等真核细胞核纤层B型成分所组成 .据以上并结合其他研究结果 ,认为随着“真核型”染色质的起源形成 ,核骨架在真核细胞起源进化的极早时期也已起源 ,且此两者的共同起源应是原核进化成真核的重要前提条件 ;核纤层蛋白 (基因 )家族的进化应是最先起源形成B型(基因 ) ,在此基础上再分化出A型 (基因 ) .  相似文献   

2.
采用非洲爪蟾卵提取物非细胞体系,以外源Lambda DNA诱导细胞核的体外组装,以此实验模式为基础,研究了细胞核体外组装过程中核纤层的组装,结果表明核纤层蛋白参与细胞核的体外组装过程,核内骨架的组装与核纤层的组装在时间上是有序的,核内骨架的组装可能为核纤层的装配提供了先决条件.在非洲爪蟾卵提取物非细胞体系中加入抗核纤层蛋白抗体,抑制核纤层的正常装配过程,核膜组装发生异常.结果提示核纤层的组装与核膜的组装是密切相关的.  相似文献   

3.
急纤虫营养细胞和休眠细胞的中间纤维-核骨架体系   总被引:1,自引:0,他引:1  
利用生化分级抽提、DGD包埋—去包埋透射电镜术和SDS—PAGE凝胶电泳,研究了膜状急纤虫营养细胞和休眠细胞内中间纤维—核骨架体系的分化特征及其蛋白组成。观察到营养细胞中,位于细胞质不同区域的中间纤维形成网状,其网络的密度不同;核骨架中,核纤层位于细胞核周缘,薄层状,厚约50nm;核内骨架由较致密的纤维网络组成。休眠细胞内该结构体系依然存在,但位于细胞内不同层次的纤维网比营养细胞的同种结构要致密得多,这可能与纤毛虫脱分化时细胞大范围的收缩有关;休眠细胞的包囊壁中层壁存在相当于中间纤维的网络结构。SDS—PAGE电泳图谱显示,休眠细胞内该体系的蛋白组成发生了较明显的变化,其中保留了营养细胞的部分蛋白条带,丢失了部分条带,同时还产生了一些特异性条带。分析表明,膜状急纤虫的中间纤维—核骨架体系是细胞在营养条件下和休眠状态下都稳定存在的结构;而纤毛虫形成休眠细胞后中间纤维—核骨架体系及蛋白组成上的变化提示,细胞在休眠状态下,基因的表达水平与营养细胞是不同的。  相似文献   

4.
核骨架与真核基因复制起点   总被引:1,自引:0,他引:1  
一、核骨架 核骨架(nuclear scaffold)又名核基质(nuclear matrix,NM),是细胞核内一种动态亚组分结构,其功能是将DNA组织成相对独立的区域(domain),并为其提供专一性的转录、复制及RNA加工的控制位点。它在形态上为一种细胞核内不溶的骨架网络,包括核纤层(lamina)、内层蛋白纤维颗粒、残留的核仁和核孔复合体。它普遍存在于真核细胞中,维持了细胞核的基本形态。  相似文献   

5.
特殊涡鞭毛虫—尖尾藻的核骨架   总被引:8,自引:3,他引:5  
采用分级抽提,DGD包埋-去包埋剂电镜技术在特殊涡鞭毛虫——尖尾藻的细胞核内显示出了一个纤维网络结构。此网络结构不溶于CSK液和可抽去微管与微丝的溶液,不被DNase所酶解和热三氯醋酸所抽提,因而是一个非DNA性质的纤维蛋白网络结构。它的一系列形态结构特征——整个呈网络形态,纤维的粗细为2.8—24nm,与细胞质内的中间纤维有广泛的连接,含有少量对维持其结构完整性所必需的RNA成分等,都十分相似于典型真核细胞的核骨架结构,但所显示的核纤层为一层不均匀、不连续的结构,这有别于典型真核细胞的核纤层。 本工作首次证实了特殊涡鞭毛虫——尖尾藻已进化产生了核骨架结构,且与典型真核细胞的核骨架在形态结构上已很接近。  相似文献   

6.
李岩  李建远 《生物磁学》2013,(3):561-563
核纤层普遍存在于高等真核细胞的细胞核中,向外与内层核膜上的蛋白结合,向内与染色质的特定区段结合,其主要成分是核纤层蛋白。核纤层蛋白主要参与细胞核的形状和大小的维持、核膜的组织、DNA的复制及有丝分裂。近年来的研究表明,核纤层蛋白与许多人类疾病密切相关。目前,核纤层蛋白在人类的各种组织和细胞中已有比较系统的研究,并且呈组织特异性及发育时序性表达。本文将就核纤层的最新研究进展做一综述。  相似文献   

7.
应用细胞成分选择性抽提方法,结合非树脂包埋去包埋电镜技术显示悬浮培养的胡萝卜细胞和银杏雄性生殖细胞均具有核纤层结构,免疫印迹反应证明这两种细胞的核纤层由A型和B型核纤层蛋白组成;至少分别含有66ku,84ku和66ku,86ku多肽,免疫胶体金标记将这些蛋白定位在核周缘,光镜和电镜原位分子杂交显示植物细胞具有与动物细胞核纤层蛋白cDNA同源的序列存在;其mRNA分选的部位主要分布在靠近核膜周围的胞质部分,实验结果证明植物细胞确实存在核纤层.  相似文献   

8.
核纤层由A和B两种核纤层蛋白及核纤层蛋白结合蛋白组成。越来越多的证据显示:A、B两种核纤层蛋白与内核膜蛋白在细胞完成各项生理功能过程中发挥着重要的作用,如:细胞核的装配、遗传物质的复制、转录以及维持细胞结构和功能的完整性等。本综述了近几年的最新研究成果,其中包括:对新发现的大量的内核膜蛋白的鉴定,核纤层蛋白和内核膜蛋白在细胞核的装配和间期细胞中的独特作用,同时从细胞生物学角度探讨了核纤层蛋白的突变与疾病的关系,为真核细胞核纤层及其相关结构的进一步研究提供了重要线索。  相似文献   

9.
核基质结合元件的结构特征   总被引:2,自引:1,他引:1  
核基质结合元件的结构特征何明亮(中国科学院上海生物化学研究所,上海200031)关键词核基质结合元件核基质又名核骨架,是细胞核内一种动态亚组分结构,在形态上为一种不溶的骨架网络,包括核纤层(lamina)、内层蛋白纤维颗粒、残留的核仁和核孔复合体。核...  相似文献   

10.
核纤层蛋白是一种存在于真核细胞核膜下的中间丝纤维蛋白,是细胞核中重要的骨架蛋白,对维持细胞核的结构和功能具有重要作用。其基因突变会引起一系列的遗传性疾病,称为核纤层蛋白病。这些疾病在细胞水平表现出氧化应激和DNA损伤的特征,提示核纤层蛋白在氧化应激和DNA损伤反应中具有重要作用。本文主要就A型核纤层蛋白在氧化应激、DNA损伤反应中的作用机制进行综述。  相似文献   

11.
Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracilis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix.  相似文献   

12.
本文用选择性系列抽提的方法结合整装细胞电镜技术和DGD包埋-去包埋超薄切片技术,在电镜下清晰地显示了PtK 2细胞的核骨架-核纤层-中间纤维体系的精细结构。处于分裂中期的细胞经抽提后可以看到,染色体残余与中间纤维仍然保持一定的联系。用免疫荧光技术对抽提后的PtK 2细胞进行分析结果表明:其中间纤维能同时与AE1和AE3反应;能与Lamin B反应的单抗可以特异地定位于其核周,而Lamin A(C)的单抗除了与其核纤层蛋白有很强的反应外还与中间纤维有交叉反应。此外,在分裂期细胞中可以看到Lamin A(C)可能与染色体能特异结合;与HeLa细胞不一样。PtK 2细胞的核骨架成份不能与280kD的核骨架蛋白单抗反应。双向电泳结果显示出PtK 2细胞的核骨架-核纤层-中间纤维体系的组成成份与HeLa细胞相比有较大的差异,而且这种差异主要反映在核骨架组份上,TdR的处理也能导致其组份发生变化。  相似文献   

13.
We have compared the organization of the nuclear lamina in adult and fetal mouse liver. Western blot analysis of the expression of lamins with specific antibodies indicates that lamin B is expressed throughout liver development, unlike lamins A and C which are absent in fetal liver. Using [125I]lamin in blot binding assays, we have observed that lamin B binds to at least three membrane proteins (96, 54 and 34 kDa) and to lamins A and C in adult nuclear envelopes, but only to the 54 and 34 kDa proteins and lamin B itself in fetal nuclear envelopes, where lamin B appears to be hyperphosphorylated.  相似文献   

14.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   

15.
16.
四膜虫细胞的核骨架及类中间纤维   总被引:3,自引:0,他引:3  
蔡树涛  焦仁杰 《动物学报》1995,41(2):212-217
采用非树脂包埋去包埋剂超薄切片结合选择性生抽提方法显示,原生动物四膜虫细胞大核具有发达的核骨架纤维网络,核周是一层完整的核纤层结构,在四膜虫细胞小核中,亦存在核骨架和核纤层。四膜虫细胞皮层中存在水下溶性纤维网架,其中含有类中间纤维蛋白组分,49KD蛋白。  相似文献   

17.
The nuclear lamina is a karyoskeletal structure located at the nuclear periphery and intimately associated with the inner nuclear membrane. It is composed of a multigene family of proteins, the lamins, which show a conspicuous cell type-specific expression pattern. The functional role of lamins has not been definitively established but available information indicates that they are involved in the organization of nuclear envelope and interphase chromatin. Spermatogenesis is characterized, among other features, by stage-specific changes in chromatin organization and function. These changes are accompanied by modifications in the organization and composition of the nuclear lamina. In previous experiments we have determined that rat spermatogenic cells express a lamin closely related, if not identical, to lamin B1 of somatic cells; whereas rat somatic lamins A, C, D and E were not detected. Considering that chromatin reorganizations during spermatogenesis may be directly or indirectly related to changes of the nuclear lamina we have decided to further investigate lamin expression during this process. Here we report on the identification of a 52 kDa protein of the rat which, according to immunocytochemical and biochemical data, appears to be a novel nuclear lamin. Using meiotic stage-specific markers, we have also demonstrated that this short lamin is selectively expressed during meiotic stages of spermatogenesis.  相似文献   

18.
A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.  相似文献   

19.
To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm0null mutant brain cells. Both exogenous lamin C (A-type) and Dm0 (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm0 did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm0 layer. Further, when lamin Dm0 and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.  相似文献   

20.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号