首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The method of circular dichroism (CD) has been used to investigate the reconstitution of mononucleosomes from C3HA mice liver and ascitic hepatoma 22A cells chromatin. It has been revealed that the more unfolding state of DNA in ascitic nucleosomes (discovered earlier) is determined by the peculiarities of the interactions between DNA and the dimers H2A-H2B, as well as by the linker histones of the H1 group. The investigation of the DNA folding in the oligonucleosome chains with increasing ionic strength has shown complete invariability of the DNA compactness in the ascitic chromatin up to 100 mM NaCl, while in liver nucleosomes an additional folding of the linker portion of the DNA was observed within the range of 20-40 mM NaCl. Oligonucleosomes from ascitic chromatin are less inclined to association upon increasing ionic strength, as compared with those from liver chromatin.  相似文献   

2.
Compaction of pigeon brain and rat thymus chromatin differing in the length of the linker DNA has been studied by the method of velocity sedimentation. The dependence of sedimentation coefficients of oligonucleosomes on the number of nucleosomes in the chain in solution of different ionic strength (0.005-0.085) has been analyzed. The analyses of these dependences showed that the structure of oligonucleosomes of both cell types at low ionic conditions may be described by the model of a zig-zag-shaped nucleosomal chain. The process of compaction of the oligonucleosomes at higher ionic strength (0.045-0.085) proceeds similarly for brain and thymus chromatin. The formation of a superhelical structure is determined by the interaction of no less than 6 nucleosomes; the compactness of the structure is significantly increased when the number of nucleosomes in the chain exceeds 10. The ability of the brain oligonucleosomes to form a compact structure despite the short linker allow the suggestion that in brain short chromatin the DNA chain does not form two complete turns in the nucleosome. This provides necessary flexibility of brain chromatin.  相似文献   

3.
Quantitative analysis of the circular dichroism of nucleohistones and protein-free DNA was carried out in order to determine the structure and the role of the linker region DNA in chromatin, in terms of the conformational change of chromatin as a function of the ionic strength. It is shown clearly that the circular dichroism of Hl-depleted chromatin isolated from calf thymus is determined only by the ratio of the core region to the linker region and demonstrated by the linear combination of the spectrum of protein-free DNA and that of the nucleosome core in 5 mm-Tris · HCl, 1 mm-EDTA (pH 7.8). The calculated spectrum for the linker region in the H1-depleted chromatin was in good agreement with that of protein-free DNA. From the difference spectra between nucleohistones and protein-free DNA, it is suggested that the chromatin has an additional winding of DNA other than 146 base-pairs of DNA around the histone core. By decreasing the ionic strength to values lower than 5 mm-Tris · HCl, 1 mm-EDTA, the ellipticity of H1-depleted chromatin increased greatly between 250 nm and 300 nm while the increase was small in the case of chromatin and the nucleosome core. Nucleosomes with linker region DNA but without histone H1 also show great increase in ellipticity in this range of wavelengths as the ionic strength is decreased. Therefore, the linker region in H1-depleted chromatin plays an important role in the conformational changes brought about by changes in the ionic strength, and the conformational changes caused in the DNA of chromatin by decreasing the ionic strength are suppressed by the presence of histone H1.  相似文献   

4.
We present a detailed thermodynamic investigation of the conformational transitions of chromatin in calf thymus nuclei. Differential scanning calorimetry was used as the leading method, in combination with infrared spectroscopy, electron microscopy, and techniques for the molecular characterization of chromatin components. The conformational transitions were induced by changes in the counterion concentration. In this way, it was possible to discriminate between the interactions responsible for the folding of the higher order structure and for the coiling of nucleosomal DNA. Our experiments confirm that the denaturation of nuclear chromatin at physiological ionic strength occurs at the level of discrete structural domains, the linker and the core particle, and we were able to rule out that the actual denaturation pattern might be determined by dissociation of the nucleohistone complex and successive migration of free histones toward native regions, as recently suggested. The sequence of the denaturation events is (1) the conformational change of the histone complement at 66 degrees C, (2) the unstacking of the linker DNA at 74 degrees C, and (3) the unstacking of the core particle DNA, that can be observed either at 90 or at 107 degrees C, depending on the degree of condensation of chromatin. Nuclear chromatin unfolds in low-salt buffers, and can be refolded by increasing the ionic strength, in accordance with the well-known behavior of short fragments. The process is athermal, therefore showing that the stability of the higher order structure depends on electrostatic interactions. The transition between the folded conformation and the unfolded one proceeds through an intermediate condensation state, revealed by an endotherm at 101 degrees C. The analysis of the thermodynamic parameters of denaturation of the polynucleosomal chain demonstrates that the wrapping of the DNA around the histone octamer involves a large energy change. The most striking observation concerns the linker segment, which melts a few degrees below the peak temperature of naked DNA. This finding is in line with previous thermal denaturation investigations on isolated chromatin at low ionic strength, and suggests that a progressive destabilization of the linker occurs in the course of the salt-induced coiling of DNA in the nucleosome.  相似文献   

5.
High-molecular-weight chicken erythrocyte chromatin was prepared by mild digestion of nuclei with micrococcal nuclease. Samples of chromatin containing both core (H3, H4, H2A, H2B) and lysine-rich (H1, H5) histone proteins (whole chromatin) or only core histone proteins (core chromatin) were examined by CD and thermal denaturation as a function of ionic strength between 0.75 and 7.0 × 10?3M Na+. CD studies at 21°C revealed a conformational transition over this range of ionic strengths in core chromatin, which indicated a partial unfolding of a segment of the core particle DNA at the lowest ionic strength studied. This transition is prevented by the presence of the lysine-rich histones in whole chromatin. Thermal-denaturation profiles of both whole and core chromatins, recorded by hyperchromicity at 260 nm, reproducibly and systematically varied with the ionic strength of the medium. Both materials displayed three resolvable thermal transitions, which represented the total DNA hyperchromicity on denaturation. The fractions of the total DNA which melted in each of these transitions were extremely sensitive to ionic strength. These effects are considered to result from intra- and/or internucleosomal electrostatic repulsions in chromatin studied at very low ionic strengths. Comparison of the whole and core chromatin melting profiles indicated substantial stabilization of the core-particle DNA by binding sites between the H1/H5 histones and the 140-base-pair core particle.  相似文献   

6.
7.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

8.
Gan HH  Schlick T 《Biophysical journal》2010,99(8):2587-2596
Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes.  相似文献   

9.
The binding of the intercalating dye methylene blue (MB) to chromatin and to free DNA has been studied as a function of ionic strength at very low binding ratios (1 MB/400 DNA bases) using absorption spectroscopy. With increasing salt concentration MB is displaced from chromatin to a higher extent than from DNA. The free energy change for MB binding to chromatin is found to be approximately 5 kJ/mole lower than for binding to DNA. This difference can be explained by the reduced number of high affinity binding sites in chromatin due to the presence of histone proteins. The difference in binding energy is virtually independent of the degree of chromatin condensation and also of the valence of counter ions, suggesting that neither the affinity for, nor the number of intercalation sites in the linker DNA is markedly changed upon the salt-induced condensation. The unaffected thermodynamics of the linker binding suggests that factors such as DNA superhelicity and the electrostatic influence from the chromatosomes remain unchanged during chromatin condensation.  相似文献   

10.
Removal of histones H1 and H5 from chicken erythrocyte mononucleosomes results in a large increase of the negative electric birefringence and dichroism, and of the relaxation times, towards the values observed for mononucleosomal DNA. Cross-linking with dimethylsuberimidate does not yield important changes in the electro-optical properties of mononucleosomes, provided that the reaction is performed at low ionic strength. We suggest that in the absence of H1/H5 the linker DNA is flexible, and that this DNA tail is unwound at low ionic strength and responsible for most of the negative anisotropy of these particles. Bipolar pulse experiments revealed that the orientation mechanism of chromatosomes and H1/H5-depleted nucleosomes is predominantly of the induced dipole type.  相似文献   

11.
12.
Electrophoresis methods used to study the fragments of chromatin revealed under the effect of Ca,Mg-dependent endonuclease on it have permitted establishing that stability of chromatin to the nucleosome level increases with aging. Changes in the compactness of the chromatin structure with aging make the accessibility of the linker DNA to nuclease lower the size of DNA fragments corresponding to mononucleosomes increasing from 192 +/- 5 pairs of bases to 209 +/- 5 pairs. Stabilization of the chromatin structure begins from certain nucleosomes which become more compact with the age. When analyzing basic proteins of chromatin by electrophoresis in different systems no qualitative changes were found in the subfraction composition of histones with aging, that permits supposing nonhistone proteins of chromatin and histone H1 to participate in the change of the chromatin structure compactness with the age.  相似文献   

13.
The viscosity values of chromatin in higher order structures, which range from 0.1 to 0.4 dl/g, are considerably lower than those of isolated DNA. These low values are consistent with other physico-chemical parameters, such as sedimentation and diffusion coefficients. When deducing molecular mass and compact shape of chromatin molecules in solvents of nearly physiological ionic strength, all these parameters are in general agreement. A decrease in ionic strength increases viscosity and decreases s-value. Both effects are consistent with a chromatin model postulating a very compact quaternary structure which unravels in low ionic environment to an unfolded but not completely extended tertiary structure.  相似文献   

14.
The method of velocity sedimentation have been used to investigate ionic-strength-induced compaction of sea urchin sperm chromatin characterized by extremely long linker DNA (100 b.p.). The dependence of sedimentation coefficients of oligonucleosomes on the number of nucleosomes in the chain have been studied in the range of ionic strength from 0.005 to 0.085. Analysis of these data indicates that such structural parameters of sea urchin sperm chromatin fibre as the diameter of the chain and the length of the chain per nucleosome are quite similar to those of chromatin with shorter linker DNA, but the DNA packing ratio is higher. The structure of sea urchin sperm oligonucleosomes agrees well with the model of three-dimensional zig-zag-shaped chain with linker DNA forming a loop. The possible role of alpha-helical regions of the C-terminal domain of sea urchin sperm histone H1 in the long linker DNA folding is discussed.  相似文献   

15.
Increasing the ionic strength of rat liver chromatin solutions above 0.4 M causes increasing viscosity. This indicates transformation of the compact chromatin molecules to more elongated forms. In the range of 0.4–0.5 M ionic strength histone H1 is dissociating continuously from the chromatin and the quaternary structure chromatin unravels. At ionic strength higher than 0.5 M the viscosities of chromatin solutions are furthermore increasing due to structural deformation. Near 0.7 M ionic strength the core histones H2A and H2B begin to dissociate from the chromatin, and the opening of the nucleosome cores leads to increasing elongation of the chromatin molecules.  相似文献   

16.
Protein-dependent conformational behavior of DNA in chromatin   总被引:1,自引:0,他引:1  
M R Riehm  R E Harrington 《Biochemistry》1987,26(10):2878-2886
  相似文献   

17.
The structural properties of H1-depleted oligonucleosomes are investigated by the use of quasielastic laser light scattering, thermal denaturation and circular dichroism and compared to those of H1-containing oligomers. To obtain information on the role of histone H1 in compaction of nucleosomes, translational diffusion coefficients (D) are determined for mono-to octanucleosomes over a range of ionic strength. The linear dependences of D on the number of nucleosomes show that the conformation of stripped oligomers is very extended and does not change drastically with increasing the ionic strength while the rigidness of the chain decreases due to the folding of linker DNA. The results prove that the salt-induced condensation is much smaller for H1-depleted than for H1-containing oligomers and that histone H1 is necessary for the formation of a supercoiled structure of oligonucleosomes, already present at low ionic strength.  相似文献   

18.
19.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

20.
MacroH2A is a histone H2A variant that is typically found in heterochromatic regions of the genome. A positively charged linker that connects the histone-fold with the macro-domain was suggested to have DNA-binding properties, and has been shown to promote oligomerization of chromatin fibers. Here we examine the influence of this basic linker on DNA of mononucleosomes. We find that the macro-linker reduces accessibility to extranucleosomal DNA, and appears to increase compaction of the nucleosome. These properties arise from interactions between the H1-like basic linker region and DNA around the entry/exit site, which increases protection of nucleosomal DNA from exonuclease III digestion by ∼10 bp. By stabilizing the wrapping of DNA around the histone core, this basic linker of macroH2A may alter the distribution of nucleosome-associated factors, and potentially contribute to the more compacted nature of heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号