首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Phosphorus (P) dynamics in large shallow lakes are greatly influenced by physical processes such as wind-driven sediment resuspension, at times scales from hours to years. Results from long-term (30 year) research on Lake Okeechobee, Florida (area 1,730 km2, mean depth 2.7 m) illustrate key features of these P dynamics. Variations in wind velocity result in changes in water column transparency, suspended solids, and total P (TP). In summer there are diurnal changes in TP associated with afternoon winds, and in winter, when strong winds occur for multiple days, monthly average TP remains high compared to summer. The magnitude of daily and seasonal TP changes can exceed 100 μg l−1. Hurricanes and tropical storms also cause extreme changes in TP that are superimposed on seasonal dynamics. When a hurricane passed 80 km south of the lake in October 1999, mean pelagic TP increased from 88 to 222 μg l−1. During large resuspension events, light attenuation is substantially increased, and this influences the biomass and spatial extent of submerged plants, as well as water column TP. In Lake Okeechobee, TP concentrations typically are ∼20 μg l−1 when submerged plants are dense, and soluble reactive P concentrations are reduced below detection, perhaps by the periphyton and plant uptake and by precipitation with calcium at high pH. In contrast, TP exceeds 50 μg l−1 when submerged plants and periphyton are absent due to prolonged deep water, and phytoplankton biomass and algal bloom frequency both are increased. In Lake Okeechobee and other large shallow lakes, complex models that explicitly consider wind-wave energy, hydrodynamics, and sediment resuspension, transport, and key biological processes are needed to accurately predict how lake water TP will respond to different management options.  相似文献   

2.
A large ultra-oligotrophic Antarctic freshwater lake, Crooked Lake, was investigated between January 1993 and November 1993. The water column supported a small phytoplankton community limited by temperature, nutrient availability and, seasonally, by low photosynthetically active radiation. Chlorophyll a concentrations were consistently low (<1 g l−1) and showed no obvious seasonal patterns. Production rates were low, ranging from non-detectable to 0.56 g C l−1 h−1, with highest rates generally occurring towards the end of the austral winter and in spring. The pattern of carbon fixation indicated that the phytoplankton was adapted to low light levels. Chlorophyll a specific photosynthetic rates (assimilation numbers) ranged from non-detectable to 1.27 gC (g chlorophyll a)−1 h−1. Partitioning of photosynthetic products revealed carbon incorporation principally into storage products such as lipids at high light fluxes with increasing protein synthesis at depth. With little allochthonous input the data suggest that lake dynamics in this Antarctic system are driven by phytoplankton activity. Received: 21 February 1997 / Accepted: 18 May 1997  相似文献   

3.
Phytoplankton populations in perennially ice-covered Lake Bonney, Antarctica grow in a unique non-turbulent environment. The absence of turbulence generated by winds or major streams, combined with strong vertical gradients in temperature and nutrients, create vertically stratified environmental conditions that support three discrete phytoplankton populations in the east lobe of this lake. Phytoplankton biomass and photosynthesis were measured in the east lobe of Lake Bonney during the winter-spring transicion (September) to mid-summer (January). During this period, irradiance beneath the ice increased from 0.03 to 1.9 mol quanta m−2 d−1. Chlorophylla concentrations ranged from 0.03 to 3.8 μl−1 within the trophogenic zone (just beneath the permanent ice cover to 20 m) and photosynthesis ranged from below detection to 3.2 μg Cl−1 d−1. Our results indicate: (1) phytoplankton photosynthesis began in late winter (before 9 September, our earliest sampling date); (2) maxima for phytoplankton biomass and production developed sequentially in time from the top to the bottom of the trophogenic zone, following the seasoral increase in irradiance; and (3) the highest photosynthetic efficiencies occurred in early spring, then decreased over the remainder of the phytoplankton growth season. The spring decrease in photosynthetic rates for shallower phytoplankton appeared to be related to nutrient availability, while photosynthesis in the deeper populations was solely lightdependent.  相似文献   

4.
The diel vertical migration of planktonic rotifers in a small, hypereutrophic tarn was investigated on four occasions in 1983. When the tarn was isothermal the rotifers were distributed throughout the water column. After stratification, the rotifers were confined to the top 1–2 m of oxygenated water. On all four dates the rotifers were aggregated at specific depths in the water column. On some occasions, the pattern of aggregation changed as the animals performed distinct diurnal migrations. Keratella cochlearis, K. quadrata and Polyarthra vulgaris usually followed the reverse migrations of the phytoplankton. In contrast, the movements of Anuraeopsis fissa were less pronounced and were associated with variations in the depth of the oxycline.  相似文献   

5.
The relationships of the halocline to both water quality and phytoplankton composition in Lake Obuchi, a shallow brackish lake in northern Japan, were investigated from April 2001 to December 2004. The halocline in this lake became stronger in summer (July–September, mean maximum density gradient 4.3–5.8 ρtm−1) but weaker in spring, fall, and winter (1.9–3.3 ρtm−1). Although the difference in water quality between the upper and lower layers separated by the halocline was high in summer, nutrients (PO43−-P and NH4+-N) were eluted from the bottom sediment as levels of dissolved oxygen decreased in the bottom layer because of the strong stratification caused by the halocline formed over the long term. Moreover, phytoplankton taxa composition also differed between the upper and lower layers in summer, but was similar in other seasons. The dominant phytoplankton taxa in the upper layer in summer were Skeletonema costatum and Cyclotella spp., whereas in the lower layer, Gymnodinium spp. (Dinophyceae) and Chlorophyceae, which prefer eutrophic and low dissolved oxygen conditions, dominated. This suggests that the halocline was related to differentiations in both water quality and ecosystem components between the upper and lower layers in the brackish lake water.  相似文献   

6.
7.
Seasonal changes in the phytoplankton community of a small tropical reservoir were monitored over a four year period comprising of an initial two seasonal cycles during which the water column stratified strongly for extended periods each year, and two further seasonal cycles after installation of a mechanical aeration system to induce artificial destratification. In the unmanaged reservoir, the concentration of chlorophyll a at 0.5 m reached maximum values (on one occasion > 90 mg m−3) when the water column was stratified and the epilimnion was very shallow (ca 2 m depth). The hypolimnion at this time was anoxic (less than 2% oxygen saturation) and had a high concentration of bacteriochlorophyll (100–200 mg m−3). The phytoplankton community of the unmanaged reservoir was generally dominated by cyanobacteria (Cylindrospermopsis raciborskii, Anabaena tenericaulis) during the warmer months of the year (November–March) (but replaced by chlorophyta, dinophyceae and euglenophyceae after periods of intense rain) and by bacillariophyceae (Synedra ulna var. chaseana, S. tenera) during the cooler, dry months. In the artificially destratified reservoir (8 h aeration day−1), the phytoplankton community was largely dominated by diatoms except after depletion of the silica content of the water column which caused diatoms to be replaced by cyanobacteria (dominated by A. tenericaulis) and a range of chlorophytes. The changing pattern of stratification and circulation of the water column in the unmanaged reservoir caused repeated disruption of the established phytoplankton assemblage with peaks of high biomass associated with transient cyanobacterial blooms. Continuous aeration and the consequent increase in the ratio mixed: euphotic depth provided conditions suitable for dominance of the phytoplankton by diatoms, as long as silica was available, and resulted in average chlorophyll levels higher than in the unmanaged reservoir (120 ± 10 v. 64 ± 9 mg m−2). Hierarchical fusion analysis based on the biomass of species differentiated the phytoplankton samples into cluster groups that could be related primarily to stratification or mixing of the water column.  相似文献   

8.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

9.
This study relates to the ecology of Dictyosphaerium pulchellum Wood in Delamere Lake in Cheshire, UK. Dictyosphaerium pulchellum is a cosmopolitan, green colonial phytoplankton species that occasionally forms dense, monospecific populations in lakes. Delamere Lake is a small, shallow, acid lake (mean pH, 4.5) with very high phytoplankton biomass (annual mean chlorophyll a, 290 μg l−1) and devoid of any significant cladoceran population, the efficient grazers of phytoplankton. A predominantly unicellular form of D. pulchellum was the dominant species in Lake Delamere, and it comprised on average ca. 80% (maximum >99%) of the lake phytoplankton biovolume. Laboratory and lake experiments were conducted on this species showed that its pH tolerance varied between 2.4 and 10.7, and its optimum tolerance range between 3.3 and 8.5 depending on other environmental variables. Low pH was not responsible for the unicellular habit of this alga, but a very high nutrient regime could be an important factor. Bioassays revealed that in Delamere Lake this species was limited by nitrogen, but nitrogen did not hamper high growth in the lake. Dictyosphaerium pulchellum can persist at low light levels, tolerate CO2-deficiency and can grow in polyhumic water with water colour around 300 mg Pt l−1, but probably not in darker waters. The dominance of D. pulchellum in Delamere Lake is apparently due to a combination of several factors: its ability to tolerate both low pH and high turbidity, exploit high nutrient conditions, absence of effective grazing pressure by zooplankton and being a superior competitor.  相似文献   

10.
R. I. Jones 《Hydrobiologia》1988,161(1):75-87
The vertical distributions and migrations are described of the most abundant flagellated phytoplankton species from the summer community of a small forest lake in southern Finland. The lake showed a steep and stable thermal stratification with a shallow oxygenated epilimnion. Horizontal variation of phytoplankton distribution within the lake was tested on two scales and found to be statistically significant only in the case of Mallomonas reginae. The vertical distribution of flagellated phytoplankton was assessed by reference to the distribution of a non-motile, neutrally buoyant species Ankyra judayi. Statistically significant, active vertical positioning was demonstrated for all the flagellates examined with the exception of Spiniferomonas bourrellyi. Diel vertical migrations were apparent for all species showing active positioning and the pattern of an evening descent and a morning ascent was ubiquitous. The extent and timing of diel migrations varied between species. The most extensive migrations were by Cryptomonas marssonii which crossed a temperature gradient of 14 °C and penetrated far into the anoxic hypolimnion. Several categories of competitive advantage can be gained by species undertaking such diel vertical migrations.  相似文献   

11.
Effect of cyanobacterial blooms on thermal stratification   总被引:2,自引:0,他引:2  
Enclosure experiments were performed at Akanoi Bay, Lake Biwa, in 1995 to determine whether the blooms of cyanobacterial algae changed thermal stratification in the lake. We used four rectangular enclosures, each 10 m × 10 m, with a volume of 200 m3, which were open to the sediments. Two enclosures, A and B, were mixed artificially by aquatic pumps from 1000 to 1400 every day, and the other two enclosures, C and D, were controls with no mixing. The experiment was conducted during late summer from August 3 to September 27. Chlorophyll a concentrations were highest in enclosure D, followed by enclosure C, both of which were controls without mixing. Enclosure A had lower concentrations than enclosures C and D, and enclosure B had the lowest concentrations. No large cyanobacterial algae blooms of Anabaena sp. and Microcystis sp. were seen in the mixed enclosures A and B. In enclosures C and D, blooms of Anabaena sp. occurred in the middle of August, and Microcystis sp. later became dominant in enclosure D at the end of August. In enclosure D, the water temperature changed over the diel cycle before August 17, with thermal stratification during the day and complete mixing at night. After August 17, as Anabaena sp. and Microcystis sp. became dominant, the temperature at the bottom of the enclosure did not change clearly over the 24-h cycle. The APE (available potential energy) density (a measure of water column stability) in the enclosures increased by almost 100% when the biovolume of Anabaena sp. + Microcystis sp. exceeded 20 mm3 l−1. These results indicate that blooms of Anabaena sp. and Microcystis sp. can increase the available potential energy in the water column and create more stable stratification for their growth. Received: September 25, 1999 / Accepted: January 6, 2000  相似文献   

12.
N. Goto  O. Mitamura  H. Terai 《Limnology》2000,1(2):133-138
Seasonal variations in photosynthetic rates by microphytobenthos and phytoplankton at the Isshiki tidal flat in Mikawa Bay were measured with a 14C combustion method. In addition, diurnal variations in the photosynthetic rate and photosynthesis versus irradiance (P-I) curves were obtained through in situ incubation. The photosynthetic rate of microphytobenthos (annual average, 13.9 ± 6.4 mg C m−2 h−1) did not show a remarkable change, and they maintained a higher production rate than phytoplankton (annual average 9.0 ± 5.1 mg C m−2 h−1) throughout the year. The P-I curves from in situ experiments showed that the photosynthetic activity of microphytobenthos at the laboratory irradiance (250 μE m−2 s−1) was 56% of that at the maximum irradiance (1200 μE m−2 s−1) in situ. In the in situ experiments, the chlorophyll a concentration, photosynthetic rate, and activity of microphytobenthos varied greatly throughout the day, influenced by tidal submersion/emersion and daylight. From an analysis of these results, it is considered that microphytobenthos contributed greatly to primary production in this ecosystem throughout the year by adapting suitably to intertidal environments. Received: July 28, 1999 / Accepted: October 10, 1999  相似文献   

13.
To clarify spatial and seasonal differences in net plankton and zoobenthos in Lake Tonle Sap, Cambodia, quantitative surveys were carried out at 14 stations in the north and south basins in high- and low-water seasons during 2003–2005. In the phytoplankton communities, a diatom Aulacoseira granulata dominated throughout the lake in the high-water seasons, while blue-green algae, mostly composed of Microcystis, surpassed other algae in the low-water season when the lake water was very turbid and the Secchi disk readings were only a few centimeters. In the low-water seasons, a bloom of floating blue-green algae occurred everywhere, especially prominent in the coastal areas. Protozoans and rotifers dominated the zooplankton communities. In the open-water stations, diversity was higher in high-water seasons in phytoplankton, while it was not significantly different between seasons in zooplankton. Composition of plankton communities in Lake Tonle Sap appears to have changed little since the 1950s, at least in phytoplankton, while the phytoplankton density appears to be higher in the present study. Among the macrozoobenthos, mollusks, oligochaetes and chironomids dominated in density, and mollusks exceeded others in biomass in both basins and seasons. The total densities of macrozobenthos were not high, being fewer than 1,300 m−2 throughout the stations and seasons. Possible reasons for the low zoobenthos abundance in the lake may include high predation pressures by benthivorous fish or unfavorable unstable and flocculant substrates.  相似文献   

14.
The marbled lungfish, Protopterus aethiopicus, a recent introduction into Lake Baringo, Kenya is now an important commercial species there. Because little is known about its behaviour, we used ultrasonic telemetry to investigate its movements and use of habitat as part of a broader biological study. Twelve marbled lungfish were implanted with ultrasonic tags and tracked for variable periods between September 2001 and 2002. Two individuals were tracked for most of the study period. Daily movement ranged from little or none to 5.2 km. Mean hourly rates of movement for three fish located twice a day (morning and late afternoon) over several days suggested that individuals were active throughout the diel period. Maximum lake depth was about 3 m and fish utilized all depths greater than 1 m. Six home ranges described for four lungfish varied in size from 5.8 to 19.8 km 2 and were occupied for between 2 and 4.5 months. Use of habitat and the movement of marbled lungfish in Lake Baringo appeared to be influenced more by biotic than abiotic factors.  相似文献   

15.
The Mary River, in the Australian wet/dry tropics, flows seasonally. When the river ceases flowing in the dry season, a series of isolated lakes remain along the river’s main floodplain channel. The limnology of a channel lake, which is 14 km long and 6-9 m deep in the dry season, was examined between April and December 2000. Four hydraulic phases were identified, these being (1) riverine (April), (2) riverine to lake transition (May), (3) lake (June–late-November), and (4) lake to riverine transition (late-November–December). These phases differ with respect to their duration and flow direction from lakes located on tropical floodplains of perennially flowing rivers. Despite the variable hydraulic conditions, the main channel remained thermally stratified, with only infrequent and short-lived deep mixing events, and sufficient light for photosynthesis in the diurnal mixed layer. During the period of isolation and in contrast to floodplain lakes in tropical South America, the depth of the Mary River channel lake always exceeded, by at least 2-fold, the depth of the diurnal mixed layer. The water quality (conductivity, dissolved oxygen, pH, Si and water clarity) and phytoplankton assemblage of the channel lake was primarily driven by its hydraulics, though this was not evident for the channel’s nutrient concentrations. Dissolved oxygen concentrations during lentic conditions were double values during the riverine and transition phases. This was attributed to the cessation of inflowing waters with a high biological oxygen demand, and enhanced photosynthetic activity of higher concentrations of phytoplankton retained under lentic conditions. The channel’s phytoplankton assemblage reflected the channel’s hydraulics, with the most common phytoplankton throughout the study period belonging to functional groups Lo(Peridinium inconspicuum), W1 (euglenoids), W2 (Trachelmonas) and Y (Cryptopmonas, Rhodomonas), with groups A (Acanthoceras) and D (Nitzschia agnita, Synedra alna) prominent during the lentic phase. Despite persistent stratification under lentic conditions, there was no clear evidence of autogenic succession or domination by any single phytoplankton functional group.  相似文献   

16.
Picoeukaryotes dominate the phytoplankton of Lake Balaton—the largest shallow lake in Central Europe—in the winter period. We examined the annual dynamics of picoplankton abundance and composition in the lake in order to establish if the picoeukaryotes merely survive the harsher winter conditions or they are able to grow in the ice-covered lake when the entire phytoplankton is limited by low light and temperature. Lake Balaton has an annual temperature range of 1–29°C, and it is usually frozen between December and February for 30–60 days. In the spring-autumn period phycocyanin and phycoerythrin rich Cyanobacteria are the dominant picoplankters, and picoeukaryotes are negligible. Our five-year study shows the presence of three types of picophytoplankton assemblages in Lake Balaton: (1) Phycoerythrin-rich Cyanobacteria—the dominant summer picoplankters in the mesotrophic lake area; (2) Phycocyanin-rich Cyanobacteria—the most abundant summer picoplankters in the eutrophic lake area and; (3) Picoeukaryotes—the dominant winter picoplankters in the whole lake. The observed winter abundance of picoeukaryotes was high (up to 3 × 105 cells ml−1), their highest biomass (520 μg l−1) exceeded the maximum summer biomass of picocyanobacteria (500 μg l−1). Our results indicate that the winter predominance of picoeukaryotes is a regular phenomenon in Lake Balaton, irrespective of the absence or presence of the ice cover. Picoeukaryotes are able to grow at as low as 1–2°C water temperature, while the total phytoplankton biomass show the lowest annual values in the winter period. In agreement with earlier findings, the contribution of picocyanobacteria to the total phytoplankton biomass in Lake Balaton is inversely related to the total phytoplankton biomass, whereas no such relationship was observable in the case of picoeukaryotes.  相似文献   

17.
Lake Monroe is the largest body of water in Indiana with a daily mean productivity of 220 mg · C · m−2 · day−1 in an observed range from 26 to 714 m · C · M−2 day−1. It is a medium soft reservoir; the acid combining capacity varies from 0.28 to 0.71 meq · l−1 with a mean slightly above 0.5 meq · l−1. The results of diurnal changes in major nutrients, the C, N, and P ratios, and bioassay experiments indicated that phosphorus is the major limiting nutrient on algal photosynthesis in this lake. Surface photo-inhibition may be used to indicate the sufficiency of light for the species of algae in the water. The low productivity in December, January, February, and early March can be attributed to light limitation due to low water transparency. Contribution no. 312 of the Great Lakes Research Division, University of Michigan. Contribution no. 312 of the Great Lakes Research Division, University of Michigan.  相似文献   

18.
Nixdorf  Brigitte 《Hydrobiologia》1994,(1):173-186
The polymictic properties of Lake Müggelsee, a eutrophic shallow lake in Berlin, are described by the water column stability (N 2) and gradients in saturation of oxygen at the deepest site of the lake (7.5 m). Mixing and stratification changed irregularly up to 7 times during the vegetation season (April to September), as was indicated by all of the stratification parameters. Thermally stable conditions generally lasted 1–2 weeks. A maximum of 5 weeks stratification was observed in 1982.In order to investigate the response of algal development, the internal rates of change of the dominant algal species in the lake during the vegetation period were estimated from weekly measurements of phytoplankton biomass from 1980 to 1990. The necessity taking a mixed sample in a shallow lake is discussed. The polymictic properties favoured the development of specific blue-green algal species; there dominance was also favoured by the trophic conditions. Among the dominant blue-greens the growth of Limnothrix redekei was independent of polymixis whereas stratification supported the starting conditions for the summer blue-greens Aphanizomenon flos-aquae and Planktothrix agardhii. After these algae reached a distinct level of biomass, they grew under mixing as well as under stratified conditions.For the development of solitary centric diatoms during summer regulation by growth restriction through nutrient limitation, esp. dissolved silicon was more important. However, Melosira sp. developed well under stratified conditions but collapsed due to increased sinking losses when the water column became too stable.An attempt is made to apply Reynolds' possibility matrix of the most likely phytoplankton assemblages as a function of nutrients and mixing in the shallow Lake Müggelsee.  相似文献   

19.
Benthic algal communities can play an important role in matter and energy flux of shallow lakes. Their contribution to total primary production of lakes has been largely unexplored. The aim of this study was to estimate the primary production of the epipsammic algal communities at different water depths in Lake Balaton (Hungary) with photosynthetic measurements performed in laboratory. The photosynthesis of the benthic algae of different origin was studied at nine different irradiance levels, in three replicates. The maximum photosynthetic rate (P max) was always higher in samples from the shallow parts than those from the deeper regions of the lake. Along the west–east longitudinal axis of the lake P max decreased in the southern part and increased in the middle of the lake as a consequence of differences in the chlorophyll-a concentrations. Knowing P max, I k, global radiation and extinction coefficient, the primary production (mg C m−2 day−1) of the epipsammic algal community was calculated at different water depths. In the shallow regions at 0.5 and 1 m water depth 75–95% and 60–85% of the production was attributable to the epipsammon. The percentage contribution of epipsammon was at 2 m water depth 20–65%. In the deeper pelagic region (>3 m) more than 85% of the primary production originated from the phytoplankton.  相似文献   

20.
Partitioning of CO2 incorporation into oxygenic phototrophic, anoxygenic phototrophic, and chemolithoautotrophic guilds was determined in a freshwater lake (Lake Cisó, Banyoles, Spain). CO2 incorporation into the different types of microorganisms was studied at different depths, during diel cycles, and throughout the year. During winter holomixis, the whole lake became anoxic and both the anoxygenic and chemolithoautotrophic guilds were more active at the surface of the lake, whereas the activity of the oxygenic guild was negligible. During stratification, the latter guild was more active in the upper metalimnion, whereas the anoxygenic guild was more active in the lower metalimnion. Specific growth rates and doubling times were estimated for the most conspicuous phototrophic microorganisms. Doubling times for Cryptomonas phaseolus ranged between 0.5 and 192 days, whereas purple sulfur bacteria (Chromatiaceae-like) ranged between 1.5 and 238 days. These growth rates were similar to those calculated with a different approach in previous papers and indicate slow-growing populations with very large biomass. Overall, the annual total CO2 incorporation in Lake Cisó was 220 g C m−2. Most of the CO2 incorporation, however, was due to the chemolithoautotrophic guild (61% during holomixis and 56% during stratification), followed by the anoxygenic phototrophic guild (35 and 19%, respectively) and the oxygenic phototrophs (4 and 25%, respectively), making dark carbon fixation the key process in the autotrophic metabolism of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号