首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Abstract— Rates of flow of glucose carbon in vivo into brain cholesterol, phospholipids, cerebrosides and gangliosides and concentrations of these lipids in the brain, were determined in adult rats after various periods of food deprivation. The rates were calculated from two measurements, the curve representing the decrease of plasma [14C]glucose specific activity with time and the specific activity of the brain lipid 180 min after intravenous injection of a tracer dose of d -[U-14C]glucose. Specific activities of brain lipids in rats deprived of food for 72h were significantly higher than in postabsorptive rats which were treated with the same dose of [14C]glucose. These higher specific activities were interpreted as a result of more labelled glucose available to lipid synthesis in the brain of fasted rats due to the substantial decrease in the rate of irreversible disposal of glucose by the whole body, commonly observed in fasted animals. The possibility that the higher specific activity values resulted from enhanced synthesis of brain lipids from glucose was ruled out since no changes were observed in the rate of flow of glucose carbon into brain lipids after food deprivation. The rate of flow of glucose carbon into gangliosides (15.4 ng C/min/mg C) was more than twice as fast as into either phospholipids or cerebrosides and about 4 times as fast as into cholesterol. The rates of carbon flow were used to calculate half lives of glucose carbon in the different classes of brain lipids. These half life values were 31 days for gangliosides, 72 days for phospholipids, 82 days for cerebrosides and 133 days for cholesterol. The results suggest that the synthesis of brain lipids from glucose is not affected by prolonged starvation in the adult rat.  相似文献   

2.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

3.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   

4.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

5.
The levels and specific radioactivities (SA) of glucose, lactate, pyruvate, α-oxoglutarate and seven amino acids in the brain of toads adapted to fresh water or to an hyperosmotic environment were analysed at various times (5 min–4 h) after an injection of [U-14C]glucose into the bloodstream. The concentrations and SA of glucose, lactate and five amino acids in blood plasma also were measured. In addition, the SA of glutamine, glutamate, aspartate and GABA in brain were determined 30 min after an injection of [1,5-14C]citrate into the cisterna magna. The flow of labelled carbon atoms from glucose to amino acids and related metabolites in the toad brain was qualitatively similar to that in the mammalian brain, but quantitatively less than one-tenth of the rate in the brain of rats. Hyperosmotic adaptation induced a large increase in the levels of glucose and amino acids in the brain without affecting the rate of glucose utilization. The SA of several amino acids relative to the SA of glucose were initially lower in hyperosmotically-adapted toads than in toads adapted to fresh water, presumably because of a greater dilution of isotope by the larger amino acid pools in the hyperosmotically-adapted toads. The rates of synthesis of alanine and glutamine from pyruvate and glutamate, respectively, appeared to increase with hyperosmotic adaptation, but the rate of GABA synthesis from glutamate was unaltered. The SA of α-oxoglutarate and glutamate were similar at all time periods in both groups of toads, an indication that these compounds were interconverted much more rapidly than the rate at which α-oxoglutarate was formed from isocitrate. The SA of lactate in comparison to that of glucose varied but was always considerably lower, even at 4 h after the [14C]glucose injection. After[U-14C]glucose, glutamine had a SA lower than that of glutamate, whereas after the injection of [14C]citrate, glutamine was formed with a SA much higher than that of glutamate. Hence, glutamate in the toad brain exhibited metabolic compartmentation similar to that in rat brain.  相似文献   

6.
Placental transfer of lactate, glucose and 2-deoxyglucose was examined employing the in situ perfused placenta. Control and streptozotocin induced diabetic Wistar rats were infused with [U14C]-glucose and [3H]-2-deoxyglucose (2DG). The fetal side of the placenta was perfuseci with a cell free medium and glucose uptake was calculated in the adjacent fetuses. Despite the 5-fold higher maternal plasma glucose concentration in the diabetic dams the calculated fetal glucose metabolic index was not significantly different between the 2 groups. Placental blood flow was reduced in the diabetic animals compared with controls but reduction of transfer of [U14C]-glucose and [3H]-2-deoxyglucose and endogenously derived [14C]-Lactate to the fetal compartment, could not be accounted for by reduced placental blood flow alone. There was no significant net production or uptake of lactate into the perfusion medium that had perfused the fetal side of the placenta in either group. The plasma lactate levels in the fetuses adjacent to the perfused placenta were found to be higher than in the maternal plasma and significantly higher in the fetuses of the diabetic group compared with control group. In this model the in situ perfused placenta does not secrete significant quantities of lactate into the fetal compartment in either the control or diabetic group.  相似文献   

7.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

8.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

9.
—The effect of 1-hydroxy-3-aminopyrrolidone-2(HA-966), a CNS depressant, was studied on the metabolism of [14C]glucose and [3H]acetate in the brain in mice. HA-966 had a marked effect on glucose metabolism. The conversion of glucose carbon into amino acids associated with the tricarboxylic acid cycle (‘cycle’) was severely reduced, while the concentration of brain glucose was approximately doubled. Relative to the specific radioactivity of glucose in the brain, the specific radioactivity of alanine was 60–70 per cent of the control, indicating a reduction in the rate of glycolysis, and those of the‘cycle’amino acids were also lowered. A reduction in‘cycle’flux of 30–35 per cent was estimated. It was established that the depressed glucose utilization flux was not due to either impaired uptake of glucose from blood to brain or to hypothermia. In contrast to [14C]glucose, there was no change in the labelling of the amino acid fraction from [3H]acetate, which is preferentially metabolized in the 'small’compartment believed to be associated with glia. Thus it seems that CNS depression caused by HA-966 resulted in a selective decrease in energy production in the‘large’metabolic compartment where glucose is oxidized preferentially and which is believed to be associated with neuronal structures. The results also suggested that communication between the metabolic compartments mediated via glutamine and GABA was reduced, since the labelling from [3H]acetate of glutamine was increased and that of GABA decreased by HA-966.  相似文献   

10.
—[2-14C]Glucose and [3H]acetate were injected simultaneously into 19-day-old rats suckling from mothers fed either a normal diet or a diet containing 4·5% lead acetate. Changes in the rate of conversion of both precursors into amino acids associated with the tricarboxylic acid cycle were observed. [I4C]Glucose. In the brain of young rats ingesting lead, the specific radioactivity of glutamate, aspartate, γ-aminobutyrate and glutamine were all significantly lowered relative to that of glucose. Glutamine labelling was the most affected. [3H]Acetate. In comparison with controls, the total amount of 3H in either water or acid-soluble constituents of the brain was the same, but the 3H content of the amino acids was significantly reduced in the lead-treated rats. In both groups, glutamine had the highest specific radioactivity but the time courses of the labelling of glutamine were different. In the control the peak incorporation was reached during the first 5 min, whereas in the experimental animals this occurred at about 10 min after the injection of the precursor, and the specific radioactivity even at that time was less than in controls. When compared with controls, the depression in the labelling of glutamine was accompanied at 5 min by an increase in the specific radioactivity of aspartate. In the lead-treated rats the labelling of GABA was also slowed and the time course seemed to follow that of glutamine rather than glutamate. In spite of the differences in the metabolism of [3H]acetate, metabolic compartmentation of glutamate, assessed by a glutamine : glutamate specific radioactivity ratio higher than 1, was evident even in the brain of the lead-treated animals, although the values of the ratio at 5 and 10 min were less than in controls. There was no evidence of a diminished supply of substrates to the brain in lead intoxication. The overall changes would be consistent with a retardation in the biochemical maturation of the brain in terms of development of glucose metabolism and metabolic compartmentation.  相似文献   

11.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

12.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

13.
Abstract— cell-free amino acid incorporating system from immature rat brain, consisting of ribosomal and soluble fractions, has been investigated for its capacity to incorporate [14C]amino acids into specific soluble proteins that interact with vinblastine sulfate and colchicine. The soluble 14C-labeled proteins formed in the cell-free system during incubation were compared with similar soluble proteins from immature rat brain which had been labeled in vivo by the incorporation of 14C-labeled amino acids. Criteria for the formation of vinblastine-binding, 14C-labeled proteins were: (1) aggregation of 14C-labeled soluble protein by one mm -vinblastine sulfate and (2) immunoprecipitation of 14C-labeled soluble protein by an antiserum against vinblastine sulfate-precipitable material. Criteria for the formation of [3H]colchicine-binding, 14C-labeled protein were based upon: (1) co-precipitation of the 3H-and 14C-labeled materials by vinblastine sulfate and (2) the coincidence of 3H- and 14C-labeled elution peaks from columns of Sephadex G-200, DEAE-Sephadex A-50 and isoelectric focusing. Both in the in vitro and in the in vivo system, 14C-labeled amino acids were incorporated into soluble proteins of the post-microsomal supernatant fraction. Proteins labeled with 14C-labeled amino acids in vitro and in vivo yielded comparable and qualitatively identical results by the criteria tested, including the formation of immunoprecipitates. In the in vitro system, 14C-labeled amino acids were incorporated into protein with a molecular weight of approx 120,000, an isoelectric point of 5.3 and with a chromatographic mobility on Sephadex G-200 which is identical to [3H]colchicine-binding protein. The above experimental results are presumptive evidence for the synthesis of vinblastine-binding and colchicine-binding proteins in the in vitro cell-free system.  相似文献   

14.
The [14C] moiety from [3H]UDP[14C]glucose was incorporated by intact cotton fibers into hot water soluble, acetic-nitric reagent soluble and insoluble components, and chloroform-methanol soluble lipids; the [3H] UDP moiety was not incorporated. The 3H-label can be exchanged rapidly with unlabeled substrate in a chase experiment. The cell wall apparent free space of cotton fibers was in the order of 30 picomoles per milligram of dry fibers; 25 picomoles per milligram easily exchanged and about 5 picomoles per milligram more tightly adsorbed. At 50 micromolar UDPglucose, 70% of the [14C]glucose was found in the lipid fraction after both a short labeling period and chase. The percent of [14C]glucose incorporated into total glucan increased slightly with chase, but the fraction of total glucans incorporated into insoluble acetic-nitric reagent (cellulose) did increase within a 30-minute chase period. The data supports the concept that glucan synthesis, including cellulose, as well as the synthesis of steryl glucosides, acetylated steryl glucosides, and glucosyl-phosphoryl-polyprenol from externally supplied UDPglucose occurs at the plasma membrane-cell wall interface. The synthase enzymes for such synthesis must be part of this interfacial membrane system.  相似文献   

15.
Abstract— A method has been developed for the simultaneous measurement of the rates of glucose consumption in the various structural and functional components of the brain in vivo. The method can be applied to most laboratory animals in the conscious state. It is based on the use of 2-deoxy-D-[14C]glucose ([14C]DG) as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissues. [14C]DG is used because the label in its product, [14C]deoxyglucose-6-phosphate, is essentially trapped in the tissue over the time course of the measurement. A model has been designed based on the assumptions of a steady state for glucose consumption, a first order equilibration of the free [14C]DG pool in the tissue with the plasma level, and relative rates of phosphorylation of [14C]DG and glucose determined by their relative concentrations in the precursor pools and their respective kinetic constants for the hexokinase reaction. An operational equation based on this model has been derived in terms of determinable variables. A pulse of [14C]DG is administered intravenously and the arterial plasma [14C]DG and glucose concentrations monitored for a preset time between 30 and 45min. At the prescribed time, the head is removed and frozen in liquid N2-chilled Freon XII, and the brain sectioned for autoradiography. Local tissue concentrations of [14C]DG are determined by quantitative autoradiography. Local cerebral glucose consumption is calculated by the equation on the basis of these measured values. The method has been applied to normal albino rats in the conscious state and under thiopental anesthesia. The results demonstrate that the local rates of glucose consumption in the brain fall into two distinct distributions, one for gray matter and the other for white matter. In the conscious rat the values in the gray matter vary widely from structure to structure (54-197 μmol/100 g/min) with the highest values in structures related to auditory function, e.g. medial geniculate body, superior olive, inferior colliculus, and auditory cortex. The values in white matter are more uniform (i.e. 33–40 μmo1/100 g/min) at levels approximately one-fourth to one-half those of gray matter. Heterogeneous rates of glucose consumption are frequently seen within specific structures, often revealing a pattern of cytoarchitecture. Thiopental anesthesia markedly depresses the rates of glucose utilization throughout the brain, particularly in gray matter, and metabolic rate throughout gray matter becomes more uniform at a lower level.  相似文献   

16.
Activation of lymphocytes and macrophages by the implantation of tumour cells (107 cells per rat) into the left flank of rats increased the conversion of glucose to lactate and of glutamine to glutamate and aspartate and the decarboxylation of [U-14C]-glucose and [U-14C]-glutamine in incubated cells. In addition, the amount of GLUT1 was increased in macrophages. The effect of insulin treatment on glucose and glutamine metabolism of lymphocytes and macrophages activated by Walker 256 tumour implantation was also examined. For this purpose, insulin was injected subcutaneously (4 U/100 g b.w. daily) after the fourth day of tumour implantation and the rats were killed 10 days afterwards. Insulin treatment fully reverted the changes due to tumour implantation in the metabolism of glucose and glutamine in lymphocytes and of glucose in macrophages.  相似文献   

17.
β-Hydroxybutyrate as a Precursor to the Acetyl Moiety of Acetylcholine   总被引:3,自引:3,他引:0  
Abstract— Rat brain cortex slices were incubated with 10 mm -glucose and trace amounts of [6-3H]glucose and [3-14C]β-hydroxybutyrate. The effects of (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase; methylmalonate, an inhibitor of β-hydroxybutyrate dehydrogenase; and increasing concentrations of unlabeled acetoacetate were examined. The incorporation of label into lactate, citrate, malate, and acetylcholine (ACh) was measured and 3H:14C ratios calculated. Incorporation of [14C]β-hydroxybutyrate into lactate was limited because of the low activity of gluconeogenic enzymes in brain, whereas incorporation of 14C label into Krebs cycle intermediates and ACh was higher than in previous experiments with [3H-,14C]-glucose. (–)-Hydroxycitrate (5.0 mM) reduced incorporation of [3H]glucose and [14C]β-hydroxybutyrate into ACh. In contrast, slices incubated with methylmalonate (1 mm ) showed a decrease in 14C incorporation without appreciably affecting glucose metabolism. The effects of high concentrations of methylmalonate were nonselective and yielded a generalized decrease in metabolism. Acetoacetate (1 mm ) also produced a decreased 14C incorporation into ACh and its precursors. At 10 mm , acetoacetate reduced 3H and 14C incorporation into ACh without substantially affecting total ACh content. From the results, it is suggested that in adult rats β-hydroxybutyrate can contribute to the acetyl moiety of ACh, possibly via the citrate cleavage pathway, though it is quantitatively less important than glucose and pyruvate. This contribution of ketone bodies could become significant should their concentration become abnormally high or glucose metabolism be reduced.  相似文献   

18.
Insulin stimulated phosphorylation of tyrosine residues by the insulin receptor kinase may be part of a signalling mechanism associated with insulin's action. We report that indomethacin inhibited the phosphorylation of the -subunit of the solubilized adipocyte insulin receptor. Indomethacin also inhibited several insulin-sensitive processes in intact rat adipocytes. Indomethacin (1 mM) inhibited basal phosphorylation of the -subunit of the solubilized insulin receptor by 6007o and insulin-stimulated phosphorylation by 30%. In adipocytes, indomethacin inhibited basal 3-0-[methyl-14C]-methyl-D glucose transport by 50070 (P < 0.01), D-[6-14C]-glucose oxidation by 5007o (P < 0.01), D-[6-14C]-glucose conversion to lipid by 30010 (P < 0.01), and D-[1-14C]-glucose conversion to lipid by 6007o (P<0.01). Similarly, indomethacin inhibited insulin-stimulated 3-0-[methyl-14C]-methyl-D-glucose transport by 75070 (P<0.01), D-[6-14C]-glucose oxidation by 20% (P<0.05), D-[1-14C]-glucose oxidation by 35070 (P<0.01), D-[6-14C] glucose conversion to lipid by 25010 (P<0.01), and D-[1-14C] glucose conversion to lipid by 4501o (P<0.01). In contrast, insulin binding to its receptor, basal D-[1-14C]-glucose oxidation and both basal and insulin-stimulated activation of glycogen synthase were unaffected by indomethacin. Thus, indomethacin partially inhibited autophosphorylation of the solubilized insulin receptor on tyrosine and partially inhibited some but not all of insulin's actions. This supports the hypothesis that insulin's metabolic effects are linked to activation of the insulin receptor protein kinase and indicates that there may be heterogeneity in the mechanisms of intracellular metabolic control by insulin.  相似文献   

19.
Abstract— Stimulation (AES) of the brachial plexus of anaesthetised rats resulted in an increased incorporation of carbon from [U-14C]glucose into TCA-insoluble proteins in the contralateral cerebral hemisphere, as compared with the ipsi-lateral hemisphere. The greatest change was observed in the sensori-motor cortex grey matter.
Following intraventricular injections of [U-14C]glucose, the changes caused by brachial plexus stimulation were variable, depending on which hemisphere received the label. The injection itself severely inhibited the incorporation into protein. Neither the injection, nor stimulation affected the conversion of [U-14C]glucose into amino acids or its relative distribution between the two hemispheres.  相似文献   

20.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号