首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Androgen has been shown to promote the proliferation of prostate cancer through the action of the androgen receptor (AR). Mutation (T877A) of the AR gene found in an androgen-sensitive prostate cancer cell line, LNCaP, has been postulated to be involved in hypersensitivity and loss of specificity for androgen. In the present study, trafficking of AR and AR (T877A) in living prostate and non-prostate cancer cell lines under high and low concentrations of androgen and antiandrogen was investigated by tagging green fluorescent protein (GFP) to the receptors. In the presence of a high concentration of androgen, AR-GFP localized in the nucleus by forming discrete clusters in all cell lines. AR (T877A)-GFP was also translocated to the nucleus in LNCaP and COS-1 cells by the addition of a high concentration of androgen. In contrast, in the presence of a low concentration of androgen, the translocation of AR-GFP and AR (T877A)-GFP was observed in LNCaP cells, but not in COS-1 cells. Upon the addition of antiandrogen, AR-GFP was translocated to the nucleus but did not form subnuclear foci in both COS-1 and LNCaP cells, whereas AR (T877A)-GFP in both cells was translocated to the nucleus with subnuclear foci. The present study demonstrates the differential response of nuclear trafficking of AR and its mutant in prostate cancer cell lines and COS cells, and the subcellular and subnuclear compartmentalization provide important information on the sensitivity of the AR mutation.  相似文献   

3.
Therapy resistance represents a major clinical challenge in disseminated prostate cancer for which only palliative treatment is available. One phenotype of therapy-resistant tumors is the expression of somatic, gain-of-function mutations of the androgen receptor (AR). Such mutant receptors can use noncanonical endogenous ligands (e.g., estrogen) as agonists, thereby promoting recurrent tumor formation. Additionally, selected AR mutants are sensitized to the estrogenic endocrine-disrupting compound (EDC) bisphenol A, present in the environment. Herein, screening of additional EDCs revealed that multiple tumor-derived AR mutants (including T877A, H874Y, L701H, and V715M) are sensitized to activation by the pesticide 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE), thus indicating that this agent may impinge on AR signaling in cancer cells. Further investigation showed that DDE induced mutant AR recruitment to the prostate-specific antigen regulatory region, concomitant with an enhancement of target gene expression, and androgen-independent proliferation. By contrast, neither AR activation nor altered cellular proliferation was observed in cells expressing wild-type AR. Activation of signal transduction pathways was also observed based on rapid phosphorylation of mitogen-activated protein kinase (MAPK) and vasodilator-stimulated phosphoprotein, although only MAPK activation was associated with DDE-induced cellular proliferation. Functional analyses showed that both mutant AR and MAPK pathways contribute to the proliferative action of DDE, as evidenced through selective abrogation of each pathway. Together, these data show that exposure to environmentally relevant doses of EDCs can promote androgen-independent cellular proliferation in tumor cells expressing mutant AR and that DDE uses both mutant AR and MAPK pathways to exert its mitogenic activity.  相似文献   

4.
5.
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.  相似文献   

6.
7.
Despite many advances, prostate cancer (PCa) is still the second most frequently diagnosed cancer and fifth leading cause of cancer death in men worldwide. So far, the promising field of onco-immunology has not yet provided a satisfactory treatment option for PCa. Here we show that the ex vivo expansion and activation of cytokine-induced killer (CIK) cells isolated from primary peripheral blood mononuclear cells induce immune-mediated apoptosis in both human PCa LNCaP and C4-2 cells. Interestingly, pretreating LNCaP and C4-2 cells with either androgen or the androgen receptor (AR) antagonist enzalutamide mediates resistance to this immunogenic attack. This is associated with a reduction of both total cell loss and apoptosis levels suggesting one possible mechanism blunting onco-immunological activity. The data also suggest that secreted factors from AR ligand-treated PCa cell suppress lymphocyte proliferation. Further, we analysed immune-mediated killing activity using conditioned media from LNCaP and C4-2 treated cells. The obtained data suggest that the conditioned media from PCa treated cells does not influence a measurable lymphocyte-mediated apoptosis. However, analysing clonal expansion of activated lymphocytes, the androgen-derived conditioned media suppresses lymphocyte proliferation/expansion suggesting inhibition of onco-immunological activity by pretreatment of PCa cells with AR ligands.  相似文献   

8.
9.
Antiandrogen flutamide, an antagonist of the wild‐type androgen receptor (AR), is used in the clinics for treating metastatic prostate cancer. However, the T877A mutated AR is paradoxically activated by hydroxyflutamide, an active form of flutamide. Despite of crystallographic studies, how the T877A mutation results in antagonist‐agonist conversion of hydroxyflutamide remains a puzzle. Here, started from a structural model of the apo form of AR ligand‐binding domain (AR‐LBD), we have investigated the impact of the T877A mutation on ligand‐induced helix‐12 positioning by replica‐exchange molecular dynamics (REMD) simulations with an unique protocol, which is capable of simulating the H12 dynamics and keeping the main body of AR‐LBD unchanged. Specifically, (i) we have computationally demonstrated that on the binding of hydroxyflutamide, the apo form of H12 rearranges into the agonistic form in the T877A mutant, but into the antagonistic forms in the wild‐type receptor, shedding light on hydroxyflutamide agonism/antagonism; (ii) By REMD simulations, we have predicted antiandrogen SC184 is a non‐agonist of the T877A mutant. This was confirmed by luciferase assays; and (iii) on the basis of the binding modes of hydroxyflutamide and SC184 from the simulations, we designed a novel flutamide derivative called SC333, which was subsequently predicted to be a pure antagonist of the T877A mutant. We then synthesized and experimentally confirmed SC333 is a pan‐antiandrogen effective against the wild‐type and the T877A and W741C mutated ARs, showing low micromolar cytotoxicity in LNCaP cells. Importantly, we demonstrated that distribution of the H12 conformations from REMD simulations is correlated with ligand agonist/antagonist activity. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

12.
Here, the synthesis and the evaluation of novel 20-aminosteroids on androgen receptor (AR) activity is reported. Compounds 11 and 18 of the series inhibit both the wild type and the T877A mutant AR-mediated transactivation indicating AR antagonistic function. Interestingly, minor structural changes such as stereoisomers of the amino lactame moiety exhibit preferences for antagonism among wild type and mutant AR. Other tested nuclear receptors are only weakly or not affected. In line with this, the prostate cancer cell growth of androgen-dependent but not of cancer cells lacking expression of the AR is inhibited. Further, the expression of the prostate specific antigen used as a diagnostic marker is also repressed. Finally steroid 18 enhances cellular senescence that might explain in part the growth inhibition mediated by this derivative. Steroids 11 and 18 are the first steroids that act as complete AR antagonists and exhibit AR specificity.  相似文献   

13.
Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa.  相似文献   

14.
A novel series of isoindoledione based compounds were identified as potent antagonists of the androgen receptor (AR). SAR around this series revealed dramatic differences in binding and function in mutant variants (MT) of the AR as compared to the wild type (WT) receptor. Optimization of the aniline portion revealed substitution patterns, which yielded potent antagonist activity against the WT AR as well as the MT AR found in the LNCaP and PCa2b human prostate tumor cell lines.  相似文献   

15.
16.
17.
18.
Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.  相似文献   

19.
Androgen receptor (AR) plays a central role in prostate cancer (PCa) growth, with androgen deprivation or AR down-regulation causing cell-cycle arrest and accumulation of the p27 cyclin-dependent kinase inhibitor. The molecular basis for this AR regulation of cell-cycle progression remains unclear. Here we demonstrate that androgen can rapidly reduce p27 protein in PCa cells by increasing its proteasome-mediated degradation. This rapid androgen-stimulated p27 degradation was mediated by AKT through the phosphorylation of p27 T157. Significantly, androgen increased TORC2-mediated AKT S473 phosphorylation without affecting the PDK1-mediated AKT T308 phosphorylation or TORC1 activity. The TORC2 activation was further supported by enhanced mTOR/RICTOR association and increased phosphorylation of additional TORC2 substrates, SGK1 and PKCα. The androgen-stimulated nuclear translocation of AR was associated with markedly-increased nuclear SIN1, a critical component of TORC2. Finally, the androgen-mediated TORC2/AKT activation targets a subset of AKT substrates including p27 and FOXO1, but not PRAS40. This study reveals a pathway linking AR to a selective activation of TORC2, the subsequent activation of AKT, and phosphorylation of a discrete set of AKT substrates that regulate cellular proliferation and survival. These findings establish that TORC2 can function as a central regulator of growth in response to signals that are distinct from those regulating TORC1, and support efforts to target TORC2 for cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号