首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passage of leukocytes across the endothelium and into arterial walls is a critical step in the development of atherosclerosis. Previously, we showed in vitro that the RhoG guanine nucleotide exchange factor SGEF (Arhgef26) contributes to the formation of ICAM-1-induced endothelial docking structures that facilitate leukocyte transendothelial migration. To further explore the in vivo role of this protein during inflammation, we generated SGEF-deficient mice. When crossed with ApoE null mice and fed a Western diet, mice lacking SGEF showed a significant decrease in the formation of atherosclerosis in multiple aortic areas. A fluorescent biosensor revealed local activation of RhoG around bead-clustered ICAM-1 in mouse aortic endothelial cells. Notably, this activation was decreased in cells from SGEF-deficient aortas compared to wild type. In addition, scanning electron microscopy of intimal surfaces of SGEF−/− mouse aortas revealed reduced docking structures around beads that were coated with ICAM-1 antibody. Similarly, under conditions of flow, these beads adhered less stably to the luminal surface of carotid arteries from SGEF −/− mice. Taken together, these results show for the first time that a Rho-GEF, namely SGEF, contributes to the formation of atherosclerosis by promoting endothelial docking structures and thereby retention of leukocytes at athero-prone sites of inflammation experiencing high shear flow. SGEF may therefore provide a novel therapeutic target for inhibiting the development of atherosclerosis.  相似文献   

2.
3.

Background

A link between early mismatched nutritional environment and development of components of the metabolic syndrome later in life has been shown in epidemiological and animal data. The aim of this study was to investigate whether an early mismatched nutrition produced by catch-up growth after fetal protein restriction could induce the appearance of hypertension and/or atherosclerosis in adult male mice.

Methodology/Principal Findings

Wild-type C57BL6/J or LDLr−/− dams were fed a low protein (LP) or a control (C) diet during gestation. Catch-up growth was induced in LP offspring by feeding dams with a control diet and by culling the litter to 4 pups against 8 in controls. At weaning, male mice were fed either standard chow or an obesogenic diet (OB), leading to 4 experimental groups. Blood pressure (BP) and heart rate (HR) were assessed in conscious unrestrained wild-type mice by telemetry. Atherosclerosis plaque area was measured in aortic root sections of LDLr−/− mice. We found that: (1) postnatal OB diet increased significantly BP (P<0.0001) and HR (P<0.008) in 3-month old OB-C and OB-LP offspring, respectively; (2) that maternal LP diet induced a significant higher BP (P<0.009) and HR (P<0.004) and (3) an altered circadian rhythm in addition to higher plasma corticosterone concentration in 9 months-old LP offspring; (4) that, although LP offspring showed higher plasma total cholesterol than control offspring, atherosclerosis assessed in aortic roots of 6-mo old mice featured increased plaque area due to OB feeding but not due to early mismatched nutrition.

Conclusions/Significance

These results indicate a long-term effect of early mismatched nutrition on the appearance of hypertension independently of obesity, while no effect on atherosclerosis was noticed at this age.  相似文献   

4.
The atheroprotective potential of n-3 α-linolenic acid (ALA) has not yet been fully determined, even in murine models of atherosclerosis. We tested whether ALA-derived, n-3 long chain polyunsaturated fatty acids (LCPUFA) could offer atheroprotection in a dose-dependent manner. Apolipoprotein B (ApoB)100/100LDLr−/− mice were fed with diets containing two levels of ALA from flaxseed oil for 16 weeks. Fish oil- and cis-monounsaturated-fat-enriched diets were used as positive and negative controls, respectively. The mice fed cis-monounsaturated fat and ALA-enriched diets exhibited equivalent plasma total cholesterol (TPC) and LDL-cholesterol (LDL-c) levels; only mice fed the fish-oil diet had lower TPC and LDL-c concentrations. Plasma LDL-CE fatty acid composition analysis showed that ALA-enriched diets lowered the percentage of atherogenic cholesteryl oleate compared with cis-monounsaturated-fat diet (44% versus 55.6%) but not as efficiently as the fish-oil diet (32.4%). Although both ALA and fish-oil diets equally enriched hepatic phospholipids with eicosapentaenoic acid (EPA) and ALA-enriched diets lowered hepatic cholesteryl ester (CE) levels compared with cis-monounsaturated-fat diet, only fish oil strongly protected from atherosclerosis. These outcomes indicate that dietary n-3 LCPUFA from fish oil and n-3 LCPUFA (mostly EPA) synthesized endogenously from ALA were not equally atheroprotective in these mice.  相似文献   

5.
Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R 2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.  相似文献   

6.

Background

The purpose of this study is to explore the potential of phase contrast imaging to detect fibrotic progress in its early stage; to investigate the feasibility of texture features for quantified diagnosis of liver fibrosis; and to evaluate the performance of back propagation (BP) neural net classifier for characterization and classification of liver fibrosis.

Methods

Fibrous mouse liver samples were imaged by X-ray phase contrast imaging, nine texture measures based on gray-level co-occurrence matrix were calculated and the feasibility of texture features in the characterization and discrimination of liver fibrosis at early stages was investigated. Furthermore, 36 or 18 features were applied to the input of BP classifier; the classification performance was evaluated using receiver operating characteristic curve.

Results

The phase contrast images displayed a vary degree of texture pattern from normal to severe fibrosis stages. The BP classifier could distinguish liver fibrosis among normal, mild, moderate and severe stages; the average accuracy was 95.1% for 36 features, and 91.1% for 18 features.

Conclusion

The study shows that early stages of liver fibrosis can be discriminated by the morphological features on the phase contrast images. BP network model based on combination of texture features is demonstrated effective for staging liver fibrosis.
  相似文献   

7.
The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I (apoA-I) have different structural features and biological activities in vitro and in vivo. To investigate the potential cardioprotective effects of apolipoprotein A-I(N74C) [apoA-I(N74C)], we examined the anti-inflammatory, antioxidant, and antiatherosclerotic effects of this cysteine mutant in a rapid atherosclerosis model induced by perivascular carotid collar placement in apoE−/− mice. Lipid-free apoA-I(N74C) showed a significant increased antioxidant potency in low density lipoprotein (LDL) oxidation in vitro and reduced intracellular lipid accumulation in THP-1-derived macrophages, relative to wild-type apoA-I (apoA-Iwt). Mice injected with recombinant HDL (rHDL) reconstituted with apoA-I(N74C) (named rHDL74) through tail veins (40 mg/kg of body weight, three injections) had a significant lower level of serum interleukin-6 (IL-6) and enhanced serum antioxidation compared with mice receiving rHDL reconstituted with apoA-Iwt (named rHDLwt). Moreover, compared with rHDLwt, the rHDL74 in vivo injection resulted in a significant decrease in plaque size, ratio of aorta intima to media, arterial remodeling, and macrophage content in lesions. In summary, intravenous injection with rHDL74 reconstituted with apoA-I cysteine mutant apoA-I (N74C) dramatically delays the development of atherosclerosis induced by perivascular carotid collar placement and reduces vascular remodeling in the carotid artery in apoE−/− mice.  相似文献   

8.
One of the leading risk factors for atherosclerosis is obesity, which is commonly caused by a nutrient-rich Western-style diet, sedentary behaviors, and shift work. Time-restricted (TR) feeding and intermittent fasting are both known to prevent overweight and adiposity, improve glucose tolerance, and decrease plasma cholesterol in high-fat diet-induced obese mice. Here we examined the overall effects of TR feeding of a Western diet (fat, 40.5 Kcal%; cholesterol, 0.21 g%) using 8-week-old Apoe−/− mice. Mice were assigned into three groups: (1) an ad libitum (AL) group fed an AL Western diet, (2) a TR group with restricted access to a Western diet (15 h/day, 12:00 to 3:00 Zeitgeber time [ZT]); and (3) an Ex/TR group fed a TR Western diet and subjected to physical exercise at 12:00 ZT. Mice in the AL group gained body weight rapidly during the 14-week observation period. With TR feeding, excessive weight gain, liver adiposity, visceral fat, and brown adipose tissue volume were effectively suppressed. Although TR feeding failed to decrease Oil Red O-stained aortic plaques in Apoe−/− mice, physical exercise significantly decreased them. Neither TR feeding with exercise nor that without exercise decreased the mean area under the curve of the plasma cholesterol level or the fasting plasma glucose. Collectively, TR feeding of a Western diet prevented the development of obesity but failed to ameliorate atherosclerosis in Apoe−/− mice.  相似文献   

9.
Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/− pigs were generated. Subsequent breeding of heterozygotes produced LDLR−/− pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/− pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR−/− pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.  相似文献   

10.
Atherosclerosis is an inflammatory condition of the arterial wall mediated by cells of both innate and adaptive immunity. T lymphocytes play an important role in orchestrating the pathogenic immune response involved in the acceleration of atherosclerosis. Previously, we have shown that a prenatal methyl-donor supplementation diet (MS), when fed to dams during pregnancy and lactation, decreased the T cell-mediated pro-inflammatory cytokine and chemokine response in F1 mice. In the current study, we report feeding Apolipoprotein E (ApoE−/−) deficient dams with the MS diet during pregnancy reduces atherosclerotic plaques in F1 mice that were fed high fat diet (HFD) after weaning. F1 mice from dams on the MS diet exhibited increased global T cell DNA methylation. T-cell chemokines and their receptors (in particular CCR2, CCR5, and CXCR3) play important roles in the inflammatory cell recruitment to vascular lesions. MS diet significantly reduced Ccr2 mRNA and protein expression in CD3+ T cells but not in CD11b+ monocytes in MS F1 mice relative to controls. F1 litter size, HFD consumption, body weight, and body fat were similar between control and MS diet groups. Moreover, serum thiol metabolite levels were similar between the two groups. However, MS diet is associated with significantly higher serum HDL and lower LDL+VLDL levels in comparison to F1 mice from dams on the control diet. Inflammatory cytokines (IL-17, TNF-α, IL-6) were also lower in MS F1 mice serum and conditioned media from T-cell culture. Altogether, these data suggest that the MS diet ameliorates development of atherosclerosis by inhibiting the T-cell Ccr2 expression, reducing inflammatory cytokines production and increasing serum HDL:LDL ratio.  相似文献   

11.
Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS) is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2−/−) and their wild-type (Nos2+/+) littermates were fed a high methionine/low folate (HM/LF) diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet). Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet). Nos2−/− mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice). Nos2−/− mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice), and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice). These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.  相似文献   

12.

Background

Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs.

Methodology/Principal Findings

AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs.

Conclusions

Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies.  相似文献   

13.
Steatosis, oxidative stress, and apoptosis underlie the development of nonalcoholic steatohepatitis (NASH). Protein kinase C delta (PKCδ) has been implicated in fatty liver disease and is activated in the methionine and choline-deficient (MCD) diet model of NASH, yet its pathophysiological importance towards steatohepatitis progression is uncertain. We therefore addressed the role of PKCδ in the development of steatosis, inflammation, oxidative stress, apoptosis, and fibrosis in an animal model of NASH. We fed PKCδ−/− mice and wildtype littermates a control or MCD diet. PKCδ−/− primary hepatocytes were used to evaluate the direct effects of fatty acids on hepatocyte lipid metabolism gene expression. A reduction in hepatic steatosis and triglyceride levels were observed between wildtype and PKCδ−/− mice fed the MCD diet. The hepatic expression of key regulators of β-oxidation and plasma triglyceride metabolism was significantly reduced in PKCδ−/− mice and changes in serum triglyceride were blocked in PKCδ−/− mice. MCD diet-induced hepatic oxidative stress and hepatocyte apoptosis were reduced in PKCδ−/− mice. MCD diet-induced NADPH oxidase activity and p47phox membrane translocation were blunted and blocked, respectively, in PKCδ−/− mice. Expression of pro-apoptotic genes and caspase 3 and 9 cleavage in the liver of MCD diet fed PKCδ−/− mice were blunted and blocked, respectively. Surprisingly, no differences in MCD diet-induced fibrosis or pro-fibrotic gene expression were observed in 8 week MCD diet fed PKCδ−/− mice. Our results suggest that PKCδ plays a role in key pathological features of fatty liver disease but not ultimately in fibrosis in the MCD diet model of NASH.  相似文献   

14.
Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.  相似文献   

15.
We characterized several cellular and structural features of early stage Type II/III atherosclerotic plaques in an established model of atherosclerosis—the ApoE-deficient mouse—by using a multimodal, coregistered imaging system that integrates three nonlinear optical microscopy (NLOM) contrast mechanisms: coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excitation fluorescence (TPEF). Specifically, the infiltration of lipid-rich macrophages and the structural organization of collagen and elastin fibers were visualized by CARS, SHG, and TPEF, respectively, in thick tissue specimens without the use of exogenous labels or dyes. Label-free CARS imaging of macrophage accumulation was confirmed by histopathology using CD68 staining. A high-fat, high-cholesterol Western diet resulted in an approximate 2-fold increase in intimal plaque area, defined by CARS signals of lipid-rich macrophages. Additionally, analysis of collagen distribution within lipid-rich plaque regions revealed nearly a 4-fold decrease in the Western diet–fed mice, suggesting NLOM sensitivity to increased matrix metalloproteinase (MMP) activity and decreased smooth muscle cell (SMC) accumulation. These imaging results provide significant insight into the structure and composition of early stage Type II/III plaque during formation and allow for quantitative measurements of the impact of diet and other factors on critical plaque and arterial wall features.  相似文献   

16.
Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease. We investigated the effect of ectopic macrophage apoAI expression on atherosclerosis and dermatitis induced by the combination of hypercholesterolemia and absence of HDL in mice. Hematopoietic progenitor cells were transduced to express human apoAI and transplanted into lethally irradiated LDL receptor−/−/apoAI−/− mice, which were then placed on a high-fat diet for 16 weeks. Macrophage apoAI expression reduced aortic CD4+ T-cell levels (−39.8%), lesion size (−25%), and necrotic core area (−31.6%), without affecting serum HDL or aortic macrophage levels. Macrophage apoAI reduced skin cholesterol by 39.8%, restored skin morphology, and reduced skin CD4+ T-cell levels. Macrophage apoAI also reduced CD4+ T-cell levels (−32.9%) in skin-draining lymph nodes but had no effect on other T cells, B cells, dendritic cells, or macrophages compared with control transplanted mice. Thus, macrophage apoAI expression protects against atherosclerosis and dermatitis by reducing cholesterol accumulation and regulating CD4+ T-cell levels, without affecting serum HDL or tissue macrophage levels.  相似文献   

17.

Background

Atherosclerosis is one of the main risk factors cause acute cerebral-cardio vascular diseases. It's of great significance to establish an atherosclerosis animal model that can mimic the characteristics and nature course of human patients. Therefore, a rhesus monkey model was induced by high-fat diet to monitor their lipid profile and intima-media thickness (IMT) of artery walls and study atherosclerosis progression.

Methods

Fifty male rhesus monkeys were enrolled in this study. All of these monkeys were aged 7 to 14 years with BMI >30 kg/m2. They were fed with high-fat diet containing 10% of fat for the first 48 weeks. Use ultrasound to measure the IMT at bilateral common carotid arteries and their bifurcations and aorta (AO) of the monkeys, and screen out the individuals with thickened IMT for the next phase. In the next 48 weeks, some of these monkeys (n = 4) were fed with standard diet containing 3% fat. Meanwhile the other monkeys (n = 5) were fed with high-fat diet for another 48 weeks. Their serum lipid level was monitored and arterial IMT was also determined periodically.

Results

Serum lipid level of all 50 monkeys elevated after fed with high-fat diet for the first 48 weeks. IMT thickening at right common carotid bifurcation and aorta (AO) was thickened in 9 monkeys. Furthermore, 4 of these 9 monkeys were fed with standard diet and other 5 monkeys were fed with high-fat diet in the following 48 weeks. The serum lipid level of the 4 monkeys recovered and their IMT at RBIF and AO did not progress. However, the lipid level of other 5 monkeys remained high, and their IMT thickening of AO progressed, and plaques and calcification focuses were found at the anterior wall of aorta near the bifurcation of common iliac artery.

Conclusions

After high-fat diet induction for 96 weeks, serum lipid levels of rhesus monkeys elevated significantly, which subsequently caused IMT thickening and plaques formation. When IMT thickening occurred, further vascular injury may be prevented by reducing diet fat content. Our study indicates that vascular injury of high-fat diet induced rhesus monkey is similar to that of human in position and progression.
  相似文献   

18.
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt+/+ mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt−/− mice did not. Compared with Pemt+/+ mice, Pemt−/− mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt−/− mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt−/− mice. Furthermore, Pemt+/+ mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.  相似文献   

19.

Background

The purpose of this study was to determine whether dietary manipulation can reliably induce early‐stage atherosclerosis and clinically relevant changes in vascular function in an established, well‐characterized non‐human primate model.

Methods

We fed 112 baboons a high‐cholesterol, high‐fat challenge diet for two years. We assayed circulating biomarkers of cardiovascular disease (CVD) risk, at 0, 7, and 104 weeks into the challenge; assessed arterial compliance noninvasively at 104 weeks; and measured atherosclerotic lesions in three major arteries at necropsy.

Results

We observed evidence of atherosclerosis in all but one baboon fed the two‐year challenge diet. CVD risk biomarkers, the prevalence, size, and complexity of arterial lesions, plus consequent arterial stiffness, were increased in comparison with dietary control animals.

Conclusions

Feeding baboons a high‐cholesterol, high‐fat diet for two years reliably induces atherosclerosis, with risk factor profiles, arterial lesions, and changes in vascular function also seen in humans.  相似文献   

20.

Objective

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach and Results

After lethally irradiated, LDLR−/− mice were transplanted with bone marrow cells from either wild-type or MCPIP1−/− mice. These chimeric mice were fed a western-type diet for 7 weeks. We found that bone marrow MCPIP1−/− mice displayed a phenotype similar to that of whole body MCPIP1−/− mice, with severe systemic and multi-organ inflammation. However, MCPIP1−/− bone marrow recipients developed >10-fold less atherosclerotic lesions in the proximal aorta than WT bone marrow recipients, and essentially no lesions in en face aorta. The diminishment in atherosclerosis in bone marrow MCPIP1−/− mice may be partially attributed to the slight decrease in their plasma lipids. Flow cytometric analysis of splenocytes showed that bone marrow MCPIP1−/− mice contained reduced numbers of T cells and B cells, but increased numbers of regulatory T cells, Th17 cells, CD11b+/Gr1+ cells and CD11b+/Ly6Clow cells. This overall anti-atherogenic leukocyte profile may also contribute to the reduced atherogenesis. We also examined the cholesterol efflux capability of MCPIP1 deficient macrophages, and found that MCPIP1deficiency increased cholesterol efflux to apoAI and HDL, due to increased protein levels of ABCA1 and ABCG1.

Conclusions

Hematopoietic deficiency of MCPIP1 resulted in severe systemic and multi-organ inflammation but paradoxically diminished atherogenesis in mice. The reduced atheroegensis may be explained by the decreased plasma cholesterol levels, the anti-atherogenic leukocyte profile, as well as enhanced cholesterol efflux capability. This study suggests that, while atherosclerosis is a chronic inflammatory disease, the mechanisms underlying atherogenesis-associated inflammation in arterial wall versus the inflammation in solid organs may be substantially different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号