首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

Background and Aims

Is the release of allelochemicals by the dominant tussock grass Festuca paniculata responsible for its dominance by inhibiting growth of neighbour grasses in subalpine grasslands? As such a community is also structured by mowing practices, what could be the impact of mowing on allelopathy?

Methods

A design was used that isolated allelopathy from resource competition by separating donor plants (Festuca paniculata) from target plants (F. paniculata, Dactylis glomerata and Bromus erectus). Leachates from donor pots containing bare soil, unmown F. paniculata or mown F. paniculata continuously irrigated target pots containing seedlings. Activated carbon was added in half of the target pots to adsorb potential allelochemicals. C and N analyses of target potting soil were used to test for any effect of treatments on resources. Total phenol concentration was measured in the solutions flowing from donor to target pots.

Results

Festuca paniculata leachates inhibited seedling growth of D. glomerata and B. erectus. Inhibition was correlated with polyphenol concentration, and was not due to resource competition for nitrogen. Mowing the leaves of the donor plants did not significantly increase this inhibition. The activated carbon treatment was not conclusive as it inhibited the seedling growing under control pots with only bare soil.

Conclusions

The results suggest that allelopathy may be at least partly responsible for F. paniculata dominance in subalpine meadows by inhibition of colonization by neighbouring species.Key words: Allelopathy, chemical interference, mowing, activated carbon, polyphenols, Festuca paniculata, Bromus erectus, Dactylis glomerata, subalpine, competition  相似文献   

2.

Background and Aims

Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.

Scope

We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.

Conclusions

To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.  相似文献   

3.

Background and Aims

The thermoregulatory flower of the Asian sacred lotus (Nelumbo nucifera) can maintain a relatively stable temperature despite great variations in ambient temperature during anthesis. The thermoregulation has been hypothesized to offer a direct energy reward for pollinators in lotus flowers. This study aims to examine whether the stable temperature maintained in the floral chamber influences the fertilization process and seed development.

Methods

An artificial refrigeration instrument was employed to cool flowers during the fertilization process and post-fertilization period in an experimental population. The effect of temperature on post-pollination events was also examined by removing petals in two field populations.

Key Results

Treatments with low floral temperature did not reduce stigma receptivity or pollen viability in undehisced anthers. Low temperature during the fertilization period significantly decreased seed set per flower but low temperature during the phase of seed development had no effect, suggesting that temperature regulation by lotus flowers facilitated fertilization success. Hand-pollination treatments in two field populations indicated that seed set of flowers with petals removed was lower than that of intact flowers in north China, where ambient temperatures are low, but not in south China, confirming that reducing the temperature of carpels did influence post-pollination events.

Conclusions

The experiments suggest that floral thermoregulation in lotus could enhance female reproductive success by facilitating fertilization.Key words: Nelumbo nucifera, Asian sacred lotus, beetle-pollination syndrome, fertilization process, post-pollination events, pollen viability, stigma receptivity, thermoregulation  相似文献   

4.

Background and Aims

Attempts to answer the old question of whether high diversity causes high invasion resistance have resulted in an invasion paradox: while large-scale studies often find a positive relationship between diversity and invasibility, small-scale experimental studies often find a negative relationship. Many of the small-scale studies are conducted in artificial communities of even-aged plants. Species in natural communities, however, do not represent one simultaneous cohort and occur at various levels of spatial aggregation at different scales. This study used natural patterns of diversity to assess the relationship between diversity and invasibility within a uniformly managed, semi-natural community.

Methods

In species-rich grassland, one seed of each of ten species was added to each of 50 contiguous 16 cm2 quadrats within seven plots (8 × 100 cm). The emergence of these species was recorded in seven control plots, and establishment success was measured in relation to the species diversity of the resident vegetation at two spatial scales, quadrat (64 cm2) within plots (800 cm2) and between plots within the site (approx. 400 m2) over 46 months.

Key Results

Invader success was positively related to resident species diversity and richness over a range of 28–37 species per plot. This relationship emerged 7 months after seed addition and remained over time despite continuous mortality of invaders.

Conclusions

Biotic resistance to plant invasion may play only a sub-ordinate role in species-rich, semi-natural grassland. As possible alternative explanations for the positive diversity–invasibility relationship are not clear, it is recommended that future studies elaborate fine-scale environmental heterogeneity in resource supplies or potential resource flows from resident species to seedlings by means of soil biological networks established by arbuscular mycorrhizal fungi.  相似文献   

5.

Background

Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios.

Methodology/Principal Findings

We examined the effect of CO2-induced pH changes (“ocean acidification”) in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5.

Conclusions and Significance

The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of ‘winners’ and ‘losers’ of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.  相似文献   

6.

Background

A large number of studies in postcopulatory sexual selection use paternity success as a proxy for fertilization success. However, selective mortality during embryonic development can lead to skews in paternity in situations of polyandry and sperm competition. Thus, when assessment of paternity fails to incorporate mortality skews during early ontogeny, this may interfere with correct interpretation of results and subsequent evolutionary inference. In a previous series of in vitro sperm competition experiments with amphibians (Litoria peronii), we showed skewed paternity patterns towards males more genetically similar to the female.

Methodology/Principal Findings

Here we use in vitro fertilizations and sperm competition trials to test if this pattern of paternity of fully developed tadpoles reflects patterns of paternity at fertilization and if paternity skews changes during embryonic development. We show that there is no selective mortality through ontogeny and that patterns of paternity of hatched tadpoles reflects success of competing males in sperm competition at fertilization.

Conclusions/Significance

While this study shows that previous inferences of fertilization success from paternity data are valid for this species, rigorous testing of these assumptions is required to ensure that differential embryonic mortality does not confound estimations of true fertilization success.  相似文献   

7.
The more the better? The role of polyploidy in facilitating plant invasions   总被引:1,自引:0,他引:1  

Background

Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant''s genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive.

Scope

We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success.

Conclusions

Polyploidy can be an important factor in species invasion success through a combination of (1) ‘pre-adaptation’, whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the ‘evolution of invasiveness’. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species.  相似文献   

8.
Sherman CD  Sagvik J  Olsson M 《PloS one》2010,5(10):e13634

Background

Studies of mate choice in anuran amphibians have shown female preference for a wide range of male traits despite females gaining no direct resources from males (i.e. non-resource based mating system). Nevertheless, theoretical and empirical studies have shown that females may still gain indirect genetic benefits from choosing males of higher genetic quality and thereby increase their reproductive success.

Methodology/Principal Findings

We investigated two components of sexual selection in the Moor frog (Rana arvalis), pre-copulatory female choice between two males of different size (‘large’ vs. ‘small’), and their fertilization success in sperm competition and in isolation. Females'' showed no significant preference for male size (13 small and six large male preferences) but associated preferentially with the male that subsequently was the most successful at fertilizing her eggs in isolation. Siring success of males in competitive fertilizations was unrelated to genetic similarity with the female and we detected no effect of sperm viability on fertilization success. There was, however, a strong positive association between a male''s innate fertilization ability with a female and his siring success in sperm competition. We also detected a strong negative effect of a male''s thumb length on his competitive siring success.

Conclusions/Significance

Our results show that females show no preference for male size but are still able to choose males which have greater fertilization success. Genetic similarity and differences in the proportion of viable sperm within a males ejaculate do not appear to affect siring success. These results could be explained through pre- and/or postcopulatory choice for genetic benefits and suggest that females are able to perceive the genetic quality of males, possibly basing their choice on multiple phenotypic male traits.  相似文献   

9.
Pyšek P  Jarošík V  Pergl J 《PloS one》2011,6(9):e24890

Background

Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants.

Principal Findings

Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats.

Conclusions

Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species'' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas.  相似文献   

10.

Background

Inferring of parentage in natural populations is important in understanding the mating systems of a species, which have great effects on its genetic structure and evolution. Muricidae, a large group (approximately 1,600 species) of marine gastropods, are poorly investigated in patterns of multiple paternity and sperm competition based on molecular techniques. The veined Rapa whelk, Rapana venosa, a commercially important muricid species with internal fertilization, is an ideal species to study the occurrence and frequency of multiple paternity and to facilitate understanding of their reproductive strategies.

Methodology/Principal Findings

We developed five highly polymorphic microsatellites in R. venosa and applied them to identify multiple paternity in 19 broods (1381 embryos) collected from Dandong, China. Multiple paternity was detected in 17 (89.5%) of 19 broods. The number of sires per brood ranged from 1 to 7 (4.3 on average). Of the 17 multiply sired broods, 16 (94.1%) were significantly skewed from equal paternal contributions, and had a dominant sire which was also dominant in each assayed capsule.

Conclusions

Our results indicate that a high level of multiple paternity occurs in the wild population of R. venosa. Similar patterns of multiple paternity in the 2–6 assayed capsules from each brood imply that fertilization events within the body of a female occur mostly (but not entirely) as random draws from a “well-but-not-perfectly blended sperm pool” of her several mates. Strongly skewed distributions of fertilization success among sires also suggest that sperm competition and/or cryptic female choice might be important for post-copulatory paternity biasing in this species.  相似文献   

11.

Background and Aims

A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems.

Methods

A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots.

Key Results

Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed.

Conclusions

Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation.  相似文献   

12.

Background

Environmental stress is widely considered to be an important factor in regulating whether changes in diversity will affect the functioning and stability of ecological communities.

Methodology/Principal Findings

We investigated the effects of a major environmental stressor (a decrease in water volume) on diversity-abundance and diversity-stability relations in laboratory microcosms composed of temperate multi-trophic rock pool communities to identify differences in community and functional group responses to increasing functional group richness along a gradient of environmental stress (low, medium, and high water volume). When a greater number of functional groups were present, communities were less temporally variable and achieved higher abundances. The stabilizing effect of increased functional group richness was observed regardless of the level of environmental stress the community was subjected too. Despite the strong consistent stabilizing effect of increased functional group richness on abundance, the way that individual functional groups were affected by functional group richness differed along the stress gradient. Under low stress, communities with more functional groups present were more productive and showed evidence of strong facilitative interactions. As stress increased, the positive effect of functional group richness on community abundance was no longer observed and compensatory responses became more common. Responses of individual functional groups to functional group richness became increasing heterogeneous are stress increased, prompting shifts from linear diversity-variability/abundance relations under low stress to a mix of linear and non-linear responses under medium and high stress. The strength of relations between functional group richness and both the abundances and temporal variability of functional groups also increased as stress increased.

Conclusions/Significance

While stress did not affect the relation between functional group richness and stability per se, the way in which functional groups responded to changes in functional group richness differed as stress increased. These differences, which include increases in the heterogeneity of responses of individual functional groups, increases in compensatory dynamics, and increases in the strength of richness-abundance and richness-variability relations, may be critical to maintaining stability under increasingly stressful environmental conditions.  相似文献   

13.

Background

Delay in seeking treatment at the hospital is a major challenge in current Buruli ulcer control; it is associated with severe sequelae and functional limitations. Choosing alternative treatment and psychological, social and practical factors appear to influence delay. Objectives were to determine potential predictors for pre-hospital delay with Leventhal''s commonsense model of illness representations, and to explore whether the type of available dominant treatment modality influenced individuals'' perceptions about BU, and therefore, influenced pre-hospital delay.

Methodology

130 healthy individuals aged >18 years, living in BU-endemic areas in Benin without any history of BU were included in this cross-sectional study. Sixty four participants from areas where surgery was the dominant treatment and sixty six participants from areas where antibiotic treatment was the dominant treatment modality were recruited. Using a semi-structured interview we measured illness perceptions (IPQ-R), knowledge about BU, background variables and estimated pre-hospital delay.

Principal Findings

The individual characteristics ‘effectiveness of treatment’ and ‘timeline acute-chronic’ showed the strongest association with pre-hospital delay. No differences were found between regions where surgery was the dominant treatment and regions where antibiotics were the dominant treatment modality.

Conclusions

Individual characteristics, not anticipated treatment modality appeared predictors of pre-hospital delay.  相似文献   

14.

Background and Aims

The effect of pollination on flower life span has been widely studied, but so far little attention has been paid to the reproductive consequences of delayed pollination in plants with long floral life spans. In the present study, Polygala vayredae was used to answer the following questions. (1) How does male and female success affect the floral longevity of individual flowers? (2) How does delaying fertilization affect the female fitness of this species?

Methods

Floral longevity was studied after experimental pollinations involving male and/or female accomplishment, bagging and open pollination. The reproductive costs of a delay in the moment of fertilization were evaluated through fruit set, seed–ovule ratio and seed weight, after pollination of flowers that had been bagged for 2–18 d.

Key Results

Senescence of the flowers of P. vayredae was activated by pollen reception on the stigmatic papillae, while pollen removal had no effect on floral longevity. Nonetheless, a minimum longevity of 8 d was detected, even after successful pollination and pollen dissemination. This period may be involved with the enhancement of male accrual rates, as the female accomplishment is generally achieved after the first visit. Floral life span of open-pollinated flowers was variable and negatively correlated with pollinator visitation rates. Delayed pollination had a major impact on the reproductive success of the plant, with fruit set, seed–ovule ratio and seed weight being significantly diminished with the increase of flower age at the moment of fertilization.

Conclusions

A strong relationship between pollination and floral longevity was observed. Flowers revealed the ability to extend or reduce their longevity, within some limits, in response to the abundance of efficient pollinators (i.e. reproductive fulfilment rates). Furthermore, with scarce or unpredictable pollinators, a long floral life span could maintain the opportunity for fertilization but would also have reproductive costs on production of offspring. Reduced female fitness late in the flower''s life could shift the cost–benefit balance towards a shorter life span, partially counteracting the selection for longer floral life span potentially mediated by scarce pollination services.Key words: Delayed pollination, endemic species, flower longevity, life span, pollen limitation, pollination, pollinator scarcity, Polygala vayredae, Polygalaceae, reproductive consequences, secondary pollen presentation  相似文献   

15.
Carrete M  Tella JL 《PloS one》2011,6(4):e18859

Background

Urbanization is the most prevailing cause of habitat transformation worldwide, differing from others by its intense levels of human activity. Despite its obvious impact on wildlife, it is still unclear why and how some species are able to adapt to urban settings. One possibility is that fear of humans and vehicles could preclude most species from invading cities. Species entering urban environments might be those that are more tolerant of human disturbance (i.e., tame species). Alternatively or in addition, urban invaders could be a fraction of variable species, with “tame” individuals invading urban habitats and other individuals remaining in rural areas.

Methodology

Using the contemporary urban invasion by birds in a recently established South American city, we tested both hypotheses by relating interspecific differences in invasiveness to their flight initiation distances (i.e., the distances at which birds flee from approaching cars, FID), as well as to their relative brain size (RBS), a correlate of measures of behavioral flexibility.

Principal Findings

Urban invasiveness was not significantly related to species'' average rural FIDs but positively related to their RBS and inter-individual variability in FID. Moreover, FIDs were consistently lower in urban than in rural conspecifics, and the FIDs of urban individuals were within the lower-range distribution of their rural conspecifics. RBS indirectly influenced urban invasion through its positive effect on inter-individual variability in FID.

Conclusions/Significance

Urban invaders do not appear to be individuals from apparently tame species, but rather tame individuals from species with a variable response regarding fear of people. Given the positive relationship between RBS and inter-individual variability in FID, our results suggest that behavioural flexibility should be regarded as a specific trait encompassing variability among individuals. Further research is needed to ascertain the neurophysiological mechanisms underlying the relationship between brain size and inter-individual variability in behavioural traits.  相似文献   

16.

Background

Fertilization of echinoderm eggs is accompanied by dynamic changes of the actin cytoskeleton and by a drastic increase of cytosolic Ca2+. Since the plasma membrane-enriched phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) serves as the precursor of inositol 1,4,5 trisphosphate (InsP3) and also regulates actin-binding proteins, PIP2 might be involved in these two processes.

Methodology/Principal Findings

In this report, we have studied the roles of PIP2 at fertilization of starfish eggs by using fluorescently tagged pleckstrin homology (PH) domain of PLC-δ1, which has specific binding affinity to PIP2, in combination with Ca2+ and F-actin imaging techniques and transmission electron microscopy. During fertilization, PIP2 increased at the plasma membrane in two phases rather than continually decreasing. The first increase was quickly followed by a decrease about 40 seconds after sperm-egg contact. However, these changes took place only after the Ca2+ wave had already initiated and propagated. The fertilized eggs then displayed a prolonged increase of PIP2 that was accompanied by the appearance of numerous spikes in the perivitelline space during the elevation of the fertilization envelope (FE). These spikes, protruding from the plasma membrane, were filled with microfilaments. Sequestration of PIP2 by RFP-PH at higher doses resulted in changes of subplasmalemmal actin networks which significantly delayed the intracellular Ca2+ signaling, impaired elevation of FE, and increased occurrences of polyspermic fertilization.

Conclusions/Significance

Our results suggest that PIP2 plays comprehensive roles in shaping Ca2+ waves and guiding structural and functional changes required for successful fertilization. We propose that the PIP2 increase and the subsequent formation of actin spikes not only provide the mechanical supports for the elevating FE, but also accommodate increased membrane surfaces during cortical granule exocytosis.  相似文献   

17.

Background

Invasive species are a serious problem in ecosystems, but are difficult to eradicate once established. Predictive methods can be key in determining which areas are of concern regarding invasion by such species to prevent establishment [1]. We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as invaders in North America via ecological niche modeling (ENM). These “carp” represent four stages of invasion of the continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established), and as such illustrate the progressive reduction of distributional disequilibrium over the history of species'' invasions.

Methodology/Principal Findings

We used ENM to estimate the potential distributional area for each species in North America using models based on native range distribution data. Environmental data layers for native and introduced ranges were imported from state, national, and international climate and environmental databases. Models were evaluated using independent validation data on native and invaded areas. We calculated omission error for the independent validation data for each species: all native range tests were highly successful (all omission values <7%); invaded-range predictions were predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful; distributional predictions for black carp show that large portions of eastern North America are at risk.

Conclusions/Significance

ENMs predicted potential ranges of carp species accurately even in regions where the species have not been present until recently. ENM can forecast species'' potential geographic ranges with reasonable precision and within the short screening time required by proposed U.S. invasive species legislation.  相似文献   

18.

Background

Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views.

Methodology and Principal Findings

We used a tri-trophic food web model to analyze the coevolutionary effects of ecological invasions by a mutant and by a predator and/or resource species of a native consumer species community and found that ecological invasions can lead to various evolutionary histories. The invasion of a predator makes multiple evolutionary community histories possible, and the evolutionary history followed can determine both the invasion success of the predator into the native community and the fate of the community. A slight difference in the timing of an ecological invasion can lead to a greatly different fate. In addition, even greatly different community histories can converge as a result of environmental changes such as a predator trait shift or a productivity change. Furthermore, the changes to the evolutionary history may be irreversible.

Conclusions and Significance

Our modeling results suggest that the timing of ecological invasion of a species into a focal community can largely change the evolutionary consequences of the community. Our approach based on adaptive dynamics will be a useful tool to understand the effect of invasion history on evolutionary formation of community.  相似文献   

19.

Background and Aims

Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant''s and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success.

Methods

Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known.

Key Results

First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares.

Conclusions

In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.Key words: Reproduction, reproductive success, pollen, siring success, microsatellite DNA, paternity, pollen tube growth, seed mass, Silene alba, stigma wilting  相似文献   

20.

Background

Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness.

Methodology/Principal Findings

Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration.

Conclusions/Significance

Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N deposition scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号