首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
Microtubules and actin filaments regulate plasma membrane topography, but their role in compartmentation of caveolae-resident signaling components, in particular G protein-coupled receptors (GPCR) and their stimulation of cAMP production, has not been defined. We hypothesized that the microtubular and actin cytoskeletons influence the expression and function of lipid rafts/caveolae, thereby regulating the distribution of GPCR signaling components that promote cAMP formation. Depolymerization of microtubules with colchicine (Colch) or actin microfilaments with cytochalasin D (CD) dramatically reduced the amount of caveolin-3 in buoyant (sucrose density) fractions of adult rat cardiac myocytes. Colch or CD treatment led to the exclusion of caveolin-1, caveolin-2, beta1-adrenergic receptors (beta1-AR), beta2-AR, Galpha(s), and adenylyl cyclase (AC)5/6 from buoyant fractions, decreasing AC5/6 and tyrosine-phosphorylated caveolin-1 in caveolin-1 immunoprecipitates but in parallel increased isoproterenol (beta-AR agonist)-stimulated cAMP production. Incubation with Colch decreased co-localization (by immunofluorescence microscopy) of caveolin-3 and alpha-tubulin; both Colch and CD decreased co-localization of caveolin-3 and filamin (an F-actin cross-linking protein), decreased phosphorylation of caveolin-1, Src, and p38 MAPK, and reduced the number of caveolae/mum of sarcolemma (determined by electron microscopy). Treatment of S49 T-lymphoma cells (which possess lipid rafts but lack caveolae) with CD or Colch redistributed a lipid raft marker (linker for activation of T cells (LAT)) and Galpha(s) from lipid raft domains. We conclude that microtubules and actin filaments restrict cAMP formation by regulating the localization and interaction of GPCR-G(s)-AC in lipid rafts/caveolae.  相似文献   

2.
Lipid rafts are specialized, cholesterol-rich domains of the plasma membrane that are enriched in certain signaling proteins, including Ca(2+)-sensitive adenylyl cyclases. This restrictive localization plays a key role in the regulation of the Ca(2+)-stimulable AC8 and the Ca(2+)-inhibitable AC6 by capacitative calcium entry. Interestingly, AC7, a Ca(2+)-insensitive AC, is found in the plasma membrane but is excluded from lipid rafts (Smith, K. E., Gu, C., Fagan, K. A., Hu, B., and Cooper, D. M. F. (2002) J. Biol. Chem. 277, 6025-6031). The mechanisms governing the specific membrane targeting of adenylyl cyclase isoforms remain unknown. To address this issue, a series of chimeras were produced between the raft-targeted AC5 and the non-raft-targeted AC7, involving switching of their major domains. The AC5-AC7 chimeras were expressed in HEK 293 cells and lipid rafts were isolated from the bulk plasma membrane by either detergent-based or non-detergent-based fractionation methods. Additionally, confocal imaging was used to investigate the precise cellular targeting of the chimeras. Surprisingly, the two tandem six-transmembrane domains of AC5 were not required for localization to lipid rafts. Rather, AC5 localization depended on the complete cytoplasmic loops (C1 and C2); constructs with mixed domains were either retained in the endoplasmic reticulum or degraded. Similar conclusions are drawn for the lipid raft localization of the Ca(2+)/calmodulin-stimulable AC8; again, the C1 and C2 domains are critical. Thus, protein-protein interactions may be more important than protein-lipid interactions in targeting these calcium-sensitive enzymes to lipid rafts.  相似文献   

3.
Lipid rafts are liquid ordered platforms that dynamically compartmentalize membranes. Caveolins and flotillins constitute a group of proteins that are enriched in these domains. Caveolin-1 has been shown to be an essential component of caveolae. Flotillins were also discovered as an integral component of caveolae and have since been suggested to interact with caveolins. However, flotillins are also expressed in non-caveolae-containing cells such as lymphocytes and neuronal cells. Hence, a discrepancy exists in the literature regarding the caveolin dependence of flotillin expression and their subcellular localization. To address this controversy, we used mouse embryonic fibroblasts (MEFs) from caveolin-1 knockout (Cav-1(-/-)) and wild-type mice to study flotillin expression and localization. Here we show that both membrane association and lipid raft partitioning of flotillins are not perturbed in Cav-1(-/-) MEFs, whereas membrane targeting and raft partitioning of caveolin-2, another caveolin family protein, is severely impaired. Moreover, we demonstrate that flotillin-1, but not flotillin-2, associates with lipid droplets upon oleic acid treatment and that this association is completely independent of caveolin. Taken together, our results show that flotillins are localized in lipid rafts independent of caveolin-1 and that translocation of flotillin-1 to lipid droplets is a caveolin-independent process.  相似文献   

4.
The peptide hormone endothelin transmits various signals through G protein-coupled receptors, the endothelin type A (ETAR) and B (ETBR) receptors. Caveolae are specialized lipid rafts containing polymerized caveolins. We examined the interaction of ETBR with caveolin-1, expressed in Sf9, COS-1, and HEK293 cells, and its effects on the subcellular distribution and the signal transduction of ETBR. ETBR formed a complex with caveolin-1 in cells in which these two proteins were coexpressed and in the mixture after purification and reconstitution (as examined by immunoprecipitation) suggesting the direct binding of ETBR with caveolin-1. The complex formed efficiently only when the ETBR was ligand-free or bound to an antagonist, RES-701-1, whereas the addition of ET-1 or another antagonist, BQ788, dissociated the complex, suggesting the structural recognition of ETBR by caveolin-1. In contrast, the ETAR bound to caveolin-1 regardless of ligand binding. Caveolin-1 utilized its scaffolding domain (residues 82-101) and the C-terminal domain (residues 136-178) to bind to ETBR, as for other signalling molecules. Furthermore, the amount of ETBR localized in caveolae increased significantly with the expression of caveolin-1 and decreased with the addition of ET-1. The disruption of caveolae by filipin reduced the ET-1-derived phosphorylation of ERK1/2. These results suggest the possibility that the binding to caveolin-1 retains the ligand-free ETBR in caveolae and regulates the ET signal.  相似文献   

5.
Cavin (PTRF) has been shown to be a highly abundant protein component of caveolae, but its functional role there is unknown. Here, we confirm that cavin co-localizes with caveolin-1 in adipocytes by confocal microscopy and co-distributes with caveolin-1 in lipid raft fractions by sucrose gradient flotation. However, cavin does not directly associate with caveolin-1 as solubilization of caveolae disrupts their interaction. Cholesterol depletion with beta-cyclodextrin causes a significant down-regulation of cavin from plasma membrane lipid raft fractions. Overexpression of cavin in HEK293-Cav-1 cells and knockdown of cavin in 3T3-L1 adipocytes enhances and diminishes caveolin-1 levels, respectively, indicating an important role for cavin in maintaining the level of caveolin-1. A truncated form of cavin, eGFP-cavin-1-322, which lacks 74 amino acids from the C-terminal, reveals a microtubular network localization by confocal microscopy. Disruption of cytoskeletal elements with latrunculin B or nocodazole diminishes cavin expression without affecting the caveolin-1 amount. We propose that the presence of cavin on the inside surface of caveolae stabilizes these structures, probably through interaction with the cytoskeleton, and cavin therefore plays an important role in caveolae formation and organization.  相似文献   

6.
Lipid rafts are cholesterol-sphingolipid-rich microdomains that function as platforms for membrane trafficking and signal transduction. Caveolae are specialized lipid raft domains that contain the structural proteins known as the caveolins. Connexins are a family of transmembrane proteins that self-associate to form cell-cell connections known as gap junctions and that are linked to cytosolic proteins, forming a protein complex or Nexus. To determine the extent to which these intracellular compartments intersect, we have systematically evaluated whether connexins are associated with lipid rafts and caveolin-1. We show that connexin 43 (Cx43) colocalizes, cofractionates, and coimmunoprecipitates with caveolin-1. A mutational analysis of Cx43 reveals that the hypothesized PDZ- and presumptive SH2/SH3-binding domains within the Cx43 carboxyl terminus are not required for this targeting event or for its stable interaction with caveolin-1. Furthermore, Cx43 appears to interact with two distinct caveolin-1 domains, i.e., the caveolin-scaffolding domain (residues 82-101) and the C-terminal domain (135-178). We also show that other connexins (Cx32, Cx36, and Cx46) are targeted to lipid rafts, while Cx26 and Cx50 are specifically excluded from these membrane microdomains. Interestingly, recombinant coexpression of Cx26 with caveolin-1 recruits Cx26 to lipid rafts, where it colocalizes with caveolin-1. This trafficking event appears to be unique to Cx26, since the other connexins investigated in this study do not require caveolin-1 for targeting to lipid rafts. Our results provide the first evidence that connexins interact with caveolins and partition into lipid raft domains and indicate that these interactions are connexin specific.  相似文献   

7.
This study was focused on the relationship between the plasma-membrane localization of neurokinin-1 receptor (NK1-R) and its endocytic and signaling properties. First, we employed electron paramagnetic resonance (EPR) to study the domain structure of HEK-293 cells and NK1-R microlocalization. EPR spectra and the GHOST condensation routine demonstrated that NK1-R was distributed in a well-ordered domain of HEK-293 cells possibly representing lipid raft/caveolae microdomains, whereas the impairment of caveolae changed the NK1-R plasma-membrane distribution. Internalization and second messenger assays combined with bioluminescence resonance energy transfer were employed subsequently to evaluate the functional importance of the NK1-R microlocalization in lipid raft/caveolae microdomains. The internalization pattern was delineated through the use of dominant-negative mutants (DNM) of caveolin-1 S80E (Cav1 S80E), dynamin-1 K44A (Dyn K44A), and β-arrestin (β-arr 319–418) and by means of cell lines that expressed various endogenous levels of β-arrestins. NK1-R displayed rapid internalization that was substantially reduced by DNMs of dynamin-1 and β-arrestin and even more profoundly in cells lacking both β-arrestin1 and β-arrestin2. These internalization data were highly suggestive of the predominant use of the clathrin-mediated pathway by NK1-R, even though NK1-R tended to reside constitutively in lipid raft/caveolae microdomains. Evidence was also obtained that the proper clustering of the receptor in these microdomains was important for effective agonist-induced NK1-R signaling and for its interaction with β-arrestin2. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Slovenian Ministry of Higher Education, Science, and Technology (grant number 0406-007) and a Slovenian-Danish collaboration grant (BI-DK/06-07-007).  相似文献   

8.
The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH(2) terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 mug/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.  相似文献   

9.
Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C. pneumoniae, an important cause of respiratory infections in humans that additionally is associated with cardiovascular disease, and C. psittaci, an important pathogen in domestic mammals and birds that also infects humans, each enter host cells via cholesterol-rich lipid raft microdomains. Further, we show that C. trachomatis serovars E and F also use these domains to enter host cells. The involvement of these membrane domains in the entry of these organisms was indicated by the sensitivity of their entry to the raft-disrupting agents Nystatin and filipin, and by their intracellular association with caveolin-1, a 22-kDa protein associated with the formation of caveolae in rafts. In contrast, caveolin-marked lipid raft domains do not mediate entry of C. trachomatis serovars A, 36B, and C, nor of LGV serovar L2 and MoPn. Finally, we show that entry of each of these chlamydial strains is independent of cellular expression of caveolin-1. Thus, entry via the Nystatin and filipin-sensitive pathway is dependent on lipid rafts containing cholesterol, rather than invaginated caveolae per se.  相似文献   

10.
The prion protein and lipid rafts   总被引:1,自引:0,他引:1  
Prions are the causative agent of the transmissible spongiform encephalopathies, such as Creutzfeldt-Jakob disease in humans. In these prion diseases the normal cellular form of the prion protein (PrP(C)) undergoes a post-translational conformational conversion to the infectious form (PrP(Sc)). PrP(C) associates with cholesterol- and glycosphingolipid-rich lipid rafts through association of its glycosyl-phosphatidylinositol (GPI) anchor with saturated raft lipids and through interaction of its N-terminal region with an as yet unidentified raft associated molecule. PrP(C) resides in detergent-resistant domains that have different lipid and protein compositions to the domains occupied by another GPI-anchored protein, Thy-1. In some cells PrP(C) may endocytose through caveolae, but in neuronal cells, upon copper binding to the N-terminal octapeptide repeats, the protein translocates out of rafts into detergent-soluble regions of the plasma membrane prior to endocytosis through clathrin-coated pits. The current data suggest that the polybasic region at its N-terminus is required to engage PrP(C) with a transmembrane adaptor protein which in turn links with the clathrin endocytic machinery. PrP(C) associates in rafts with a variety of signalling molecules, including caveolin-1 and Fyn and Src tyrosine kinases. The clustering of PrP(C) triggers a range of signal transduction processes, including the recruitment of the neural cell adhesion molecule to rafts which in turn promotes neurite outgrowth. Lipid rafts appear to be involved in the conformational conversion of PrP(C) to PrP(Sc), possibly by providing a favourable environment for this process to occur and enabling disease progression.  相似文献   

11.
Reggie-1 and reggie-2 are highly conserved and widely expressed proteins associated with membrane rafts. The molecular function of reggies remains to be clarified, but recent data indicate that they are involved in various cellular processes such as insulin signaling, phagocytosis and actin remodeling. However, there is discrepancy in the literature if reggies are associated with caveolae or non-caveolar rafts. Reggies are expressed and raft associated also in many cells which do not contain caveolae, such as neurons and lymphocytes. However, it is not clear if the function or localization of reggies are dependent on the presence of caveolae and expression of caveolin-1 protein. In this study, we directly addressed this question in epithelial cells. We could show that ectopic expression of caveolin-1 does not result in any change in the cellular localization of reggie-1, which is present at the plasma membrane also in the absence of caveolin-1. On the other hand, caveolin-2, which localizes in caveolae, is dependent on caveolin-1 expression in order to be localized at the plasma membrane. Although reggie-1 and reggie-2 strongly interact with each other, we did not detect a direct interaction between caveolin-1 and reggies by means of a yeast two-hybrid assay, nor could reggies be co-immunoprecipitated with caveolin-1. Furthermore, endogenous reggie-1 and -2 were found not to colocalize with caveolin-1 in epithelial cells. Thus, our data indicate that reggies are localized in microdomains different from caveolae, and the function of reggies is different from and independent of caveolin-1.  相似文献   

12.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

13.
Tissue factor (TF) is the most important trigger of blood coagulation in vascular pathology. Rabbit TF, with or without (delta C) its COOH-terminal intracellular tail, has been conjugated to green fluorescent protein (GFP) to study subcellular localization and other functions of TF. TF-GFP and TF delta C-GFP are associated with Na2CO3-resistant buoyant fractions in HEK-293 cells (lipid rafts); there is no morphological difference in the surface distribution of these or other GFP-labeled membrane proteins present in or excluded from rafts (confocal microscopy, HEK-293 cells). Endogenous TF expressed by rabbit aortic smooth muscle cells (SMCs) is also raft associated. Membranes from HEK-293 cells expressing recombinant TF-GFP or wild-type TF were equipotent to clot human plasma; however, TF delta C-GFP was approximately 20-fold more active (per membrane weight). Immunoblot confirmed that the deletion mutant is more abundantly expressed, and confocal microscopy showed that it has preferential membrane localization, whereas TF-GFP is mainly intracellular (nuclear lining and multiple granules). With a similar half-life (<4 h), the two constructions differ by their intracellular retention, lower for TF delta C-GFP. In serum-starved SMCs, the expression of endogenous TF was upregulated by interleukin-1 beta and/or FBS treatment (immunoblot, immunofluorescence, clotting assay). However, TF secretion or surface expression was not regulated by stimuli of physiological intensity (such as stimulation of the coexpressed kinin B1 receptors), although a calcium ionophore was highly active in this respect. TF is a raft-associated molecule whose surface expression (secretion) is apparently retarded or impaired by structural determinant(s) located in its COOH-terminal tail.  相似文献   

14.
The scavenger receptor CD36 binds a diverse array of ligands, including thrombospondin-1, oxidized low density lipoprotein (OxLDL), fatty acids, anionic phospholipids, and apoptotic cells. CD36 has been reported to be present in lipid rafts/caveolae, but little is known about the membrane trafficking of this protein at baseline or following ligand binding. Here, we determined that expression of CD36 in Chinese hamster ovary (CHO) cells and endogenous expression of CD36 in C32 cells led to a homogeneous distribution of the protein on the plasma membrane, as judged by confocal fluorescence microscopy. This homogeneous pattern was observed both by anti-CD36 antibody staining and by live cell imaging of CHO cells expressing a chimeric CD36-green fluorescent protein construct. In contrast, caveolin-1 displayed its usual punctate surface distribution. Correspondingly, dual labeling of CD36 and caveolin-1 showed essentially no overlap, neither by immunofluorescence light microscopy nor by immunogold electron microscopy. Furthermore, isolation of lipid rafts by sucrose gradient ultracentrifugation of cold Triton X-100 cell lysates yielded both CD36 and caveolin-1, but immunoprecipitates of caveolin-1 did not contain CD36. Binding of Ox-LDL led to internalization of CD36 and OxLDL into endosomal structures that did not contain caveolin-1 or transferrin but that co-internalized the glycosyl-phosphatidylinositol-anchored protein decay accelerating factor, a lipid raft protein. Furthermore, expression of CD36 in the caveolin-1-negative KB cell line is sufficient for OxLDL-induced internalization of CD36, indicating that caveolin-1 is not required for this endocytic process. Taken together, these data demonstrate that at steady state, CD36 is localized in lipid rafts but not in caveolae, and that binding of OxLDL to CD36 leads to endocytosis through a lipid raft pathway that is distinct from the clathrin-mediated or caveolin internalization pathways.  相似文献   

15.
Several cell types, including cardiac myocytes and vascular endothelial cells, produce nitric oxide (NO) via both constitutive and inducible isoforms of NO synthase. NO attenuates cardiac contractility and contributes to contractile dysfunction in heart failure, although the precise molecular mechanisms for these effects are poorly defined. Adenylyl cyclase (AC) isoforms type 5 and 6, which are preferentially expressed in cardiac myocytes, may be inhibited via a direct nitrosylation by NO. Because endothelial NO synthase (eNOS and NOS3), beta-adrenergic (betaAR) receptors, and AC6 all can localize in lipid raft/caveolin-rich microdomains, we sought to understand the role of lipid rafts in organizing components of betaAR-G(s)-AC signal transduction together with eNOS. Using neonatal rat cardiac myocytes, we found that disruption of lipid rafts with beta-cyclodextrin inhibited forskolin-stimulated AC activity and cAMP production, eliminated caveolin-3-eNOS interaction, and increased NO production. betaAR- and G(s)-mediated activation of AC activity were inhibited by beta-cyclodextrin treatment, but prostanoid receptor-stimulated AC activity, which appears to occur outside caveolin-rich microdomains, was unaffected unless eNOS was overexpressed and lipid rafts were disrupted. An NO donor, SNAP, inhibited basal and forskolin-stimulated cAMP production in both native cardiac myocytes and cardiac myocytes and pulmonary artery endothelial cells engineered to overexpress AC6. These effects of SNAP were independent of guanylyl cyclase activity and were mimicked by overexpression of eNOS. The juxtaposition of eNOS with betaAR and AC types 5 and 6 results in selective regulation of betaAR by eNOS activity in lipid raft domains over other G(s)-coupled receptors localized in nonraft domains. Thus co-localization of multiple signaling components in lipid rafts provides key spatial regulation of AC activity.  相似文献   

16.
The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis . The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-β-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.  相似文献   

17.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   

18.
We have recently shown that oxytocin inhibits cell growth when the vast majority of oxytocin receptors (OTRs) are excluded from detergent-resistant membranes (DRMs; the biochemical counterpart of lipid rafts), but has a strong mitogenic effect when the receptors are targeted to these plasma membrane domains upon fusion with caveolin-2, a resident raft protein. The aim of this study was to investigate whether the manipulation of total cell cholesterol can influence OTR localization and signaling. Our data indicate that cholesterol depletion in HEK-293 cells does not affect the signaling events mediated by the OTRs located outside DRMs. When treated with 2 mM methyl-beta-cyclodextrin (MbetaCD), the receptors remained outside and continued to inhibit cell growth. On the contrary, the MbetaCD treatment of cells expressing receptors fused to caveolin-2 led to their redistribution outside DRMs, and converted the receptor-mediated proliferative effect into cell growth inhibition. These data indicate that 1) once released from DRMs, the receptors fused to caveolin-2 signal exactly as wild-type OTRs and 2) their DRM location is responsible for the specific OTR signaling leading to cell proliferation. Finally, we evaluated whether cholesterol loading could force the OTRs into lipid rafts and change their signaling, but, after cell treatment with an MbetaCD/cholesterol complex, receptor stimulation continued to lead to cell growth inhibition, thus indicating that increasing cell cholesterol levels is not sufficient per se to affect OTR signaling.  相似文献   

19.
Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains.   总被引:7,自引:0,他引:7  
Most mammalian cells have in their plasma membrane at least two types of lipid microdomains, non-invaginated lipid rafts and caveolae. Glycosylphosphatidylinositol (GPI)-anchored proteins constitute a class of proteins that are enriched in rafts but not caveolae at steady state. We have analyzed the effects of abolishing GPI biosynthesis on rafts, caveolae, and cholesterol levels. GPI-deficient cells were obtained by screening for resistance to the pore-forming toxin aerolysin, which uses this class of proteins as receptors. Despite the absence of GPI-anchored proteins, mutant cells still contained lipid rafts, indicating that GPI-anchored proteins are not crucial structural elements of these domains. Interestingly, the caveolae-specific membrane proteins, caveolin-1 and 2, were up-regulated in GPI-deficient cells, in contrast to flotillin-1 and GM1, which were expressed at normal levels. Additionally, the number of surface caveolae was increased. This effect was specific since recovery of GPI biosynthesis by gene recomplementation restored caveolin expression and the number of surface caveolae to wild type levels. The inverse correlation between the expression of GPI-anchored proteins and caveolin-1 was confirmed by the observation that overexpression of caveolin-1 in wild type cells led to a decrease in the expression of GPI-anchored proteins. In cells lacking caveolae, the absence of GPI-anchored proteins caused an increase in cholesterol levels, suggesting a possible role of GPI-anchored proteins in cholesterol homeostasis, which in some cells, such as Chinese hamster ovary cells, can be compensated by caveolin up-regulation.  相似文献   

20.
Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号