首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.  相似文献   

2.
D-serine is a co-agonist of NMDA receptor (NMDAR) and plays important roles in synaptic plasticity mechanisms. Serine racemase (SR) is a brain-enriched enzyme that converts L-serine to D-serine. SR interacts with the protein interacting with C-kinase 1 (PICK1), which is known to direct protein kinase C (PKC) to its targets in cells. Here, we investigated whether PKC activity regulates SR activity and D-serine availability in the brain. In vitro, PKC phosphorylated SR and decreased its activity. PKC activation increased SR phosphorylation in serine residues and reduced D-serine levels in astrocyte and neuronal cultures. Conversely, PKC inhibition decreased basal SR phosphorylation and increased cellular D-serine levels. In vivo modulation of PKC activity regulated both SR phosphorylation and D-serine levels in rat frontal cortex. Finally, rats that completed an object recognition task showed decreased SR phosphorylation and increased D-serine/total serine ratios, which was markedly correlated with decreased PKC activity in both cortex and hippocampus. Results indicate that PKC phosphorylates SR in serine residues and regulates D-serine availability in the brain. This interaction may be relevant for the regulation of physiological and pathological mechanisms linked to NMDAR function.  相似文献   

3.
Mammalian brain contains high levels of d-serine, an endogenous co-agonist of N-methyl D-aspartate type of glutamate receptors. D-Serine is synthesized by serine racemase, a brain enriched enzyme converting L- to D-serine. Degradation of D-serine is achieved by D-amino acid oxidase, but this enzyme is not present in forebrain areas that are highly enriched in D-serine. We now report that serine racemase catalyzes the degradation of cellular D-serine itself, through the alpha,beta-elimination of water. The enzyme also catalyzes water alpha,beta-elimination with L-serine and L-threonine. alpha,beta-Elimination with these substrates is observed both in vitro and in vivo. To investigate further the role of alpha,beta-elimination in regulating cellular D-serine, we generated a serine racemase mutant displaying selective impairment of alpha,beta-elimination activity (Q155D). Levels of D-serine synthesized by the Q155D mutant are several-fold higher than the wild-type both in vitro and in vivo. This suggests that the alpha,beta-elimination reaction limits the achievable D-serine concentration in vivo. Additional mutants in vicinal residues (H152S, P153S, and N154F) similarly altered the partition between the alpha,beta-elimination and racemization reactions. alpha,beta-Elimination also competes with the reverse serine racemase reaction in vivo. Although the formation of L- from D-serine is readily detected in Q155D mutant-expressing cells incubated with physiological D-serine concentrations, reversal with wild-type serine racemase-expressing cells required much higher D-serine concentration. We propose that alpha,beta-elimination provides a novel mechanism for regulating intracellular D-serine levels, especially in brain areas that do not possess D-amino acid oxidase activity. Extracellular D-serine is more stable toward alpha,beta-elimination, likely due to physical separation from serine racemase and its elimination activity.  相似文献   

4.
5.
It has been recently established that in various brain regions D-serine, the product of serine racemase, occupies the so-called 'glycine site' within N-methyl D-aspartate receptors. Mammalian brain serine racemase is a pyridoxal-5' phosphate-containing enzyme that catalyzes the racemization of L-serine to D-serine. It has also been shown to catalyze the alpha,beta-elimination of water from L-serine or D-serine to form pyruvate and ammonia. Serine racemase is included within the group of type II-fold pyridoxal-5' phosphate enzymes, together with many other racemases and dehydratases. Serine racemase was first purified from rat brain homogenates and later recombinantly expressed in mammalian and insect cells as well as in Escherichia coli. It has been shown that serine racemase is activated by divalent cations like calcium, magnesium and manganese, as well as by nucleotides like ATP, ADP or GTP. In turn, serine racemase is also strongly inhibited by reagents that react with free sulfhydryl groups such as glutathione. Several yeast two-hybrid screens for interaction partners identified the proteins glutamate receptor interacting protein, protein interacting with C kinase 1 and Golga3 to bind to serine racemase, having different effects on its catalytic activity or stability. In addition, it has also been proposed that serine racemase is regulated by phosphorylation. Thus, d-serine production in the brain is tightly regulated by various factors pointing at its physiologic importance. In this minireview, we will focus on the regulation of brain serine racemase and d-serine synthesis by the factors mentioned above.  相似文献   

6.
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.  相似文献   

7.
D-Amino acids have been known to be present in bacteria for more than 50 years, but only recently they were identified in mammals. The occurrence of D-amino acids in mammals challenge classic concepts in biology in which only L-amino acids would be present or thought to play important roles. Recent discoveries uncovered a role of endogenous D-serine as a putative glial-derived transmitter that regulates glutamatergic neurotransmission in mammalian brain. Free D-serine levels in the brain are about one third of L-serine values and its extracellular concentration is higher than many common L-amino acids. D-Serine occurs in protoplasmic astrocytes, a class of glial cells that ensheath the synapses and modulate neuronal activity. Biochemical and electrophysiological studies suggest that endogenous D-serine is a physiological modulator at the co-agonist site of NMDA-type of glutamate receptors. We previously showed that D-serine is synthesized by a glial serine racemase, a novel enzyme converting L- to D-serine in mammalian brain. The enzyme requires pyridoxal 5'-phosphate and it was the first racemase to be cloned from eucaryotes. Inhibitors of serine racemase have therapeutic implications for pathological processes in which over-stimulation of NMDA receptors takes place, such as stroke and neurodegenerative diseases. Here, we review the role of endogenous D-serine in modulating NMDA neurotransmission, its biosynthetic apparatus and the potential usefulness of serine racemase inhibitors as a novel neuroprotective strategy to decrease glutamate/NMDA excitotoxicity.  相似文献   

8.
哺乳动物中枢神经系统中D构象丝氨酸的区域性高浓度分布与N-甲基-D-天冬氨酸(NMDA)受体相一致.它主要由丝氨酸消旋酶将L丝氨酸直接消旋而来,也可能通过肠道菌群产生后吸收至体内,最终被D构象氨基酸氧化酶氧化.这种从胶质细胞而非神经元来源的“异常”构象氨基酸作为一种新型神经递质,不仅更新了传统“神经递质”的定义,而且为许多与NMDA受体过度兴奋或表达下调相关的神经系统疾病治疗提出了新的线索.  相似文献   

9.
Wolosker H  Dumin E  Balan L  Foltyn VN 《The FEBS journal》2008,275(14):3514-3526
The mammalian brain contains unusually high levels of D-serine, a D-amino acid previously thought to be restricted to some bacteria and insects. In the last few years, studies from several groups have demonstrated that D-serine is a physiological co-agonist of the N-methyl D-aspartate (NMDA) type of glutamate receptor -- a key excitatory neurotransmitter receptor in the brain. D-Serine binds with high affinity to a co-agonist site at the NMDA receptors and, along with glutamate, mediates several important physiological and pathological processes, including NMDA receptor transmission, synaptic plasticity and neurotoxicity. In recent years, biosynthetic, degradative and release pathways for D-serine have been identified, indicating that D-serine may function as a transmitter. At first, D-serine was described in astrocytes, a class of glial cells that ensheathes neurons and release several transmitters that modulate neurotransmission. This led to the notion that D-serine is a glia-derived transmitter (or gliotransmitter). However, recent data indicate that serine racemase, the D-serine biosynthetic enzyme, is widely expressed in neurons of the brain, suggesting that D-serine also has a neuronal origin. We now review these findings, focusing on recent questions regarding the roles of glia versus neurons in d-serine signaling.  相似文献   

10.
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the 'glycine' site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.  相似文献   

11.
D-serine is an endogenous neurotransmitter that binds to the NMDA receptor, thereby increasing the affinity for glutamate, and the potential for excitotoxicity. The primary source of D-serine in vivo is enzymatic racemization by serine racemase (SR). Regulation of D-serine in vivo is poorly understood, but is thought to involve a combination of controlled production, synaptic reuptake by transporters, and intracellular degradation by D-amino acid oxidase (DAO). However, SR itself possesses a well-characterized eliminase activity, which effectively degrades D-serine as well. D-serine is increased two-fold in spinal cords of G93A Cu,Zn-superoxide dismutase (SOD1) mice--the standard model of amyotrophic lateral sclerosis (ALS). ALS mice with SR disruption show earlier symptom onset, but survive longer (progression phase is slowed), in an SR-dependent manner. Paradoxically, administration of D-serine to ALS mice dramatically lowers cord levels of D-serine, leading to changes in the onset and survival very similar to SR deletion. D-serine treatment also increases cord levels of the alanine-serine-cysteine transporter 1 (Asc-1). Although the mechanism by which SOD1 mutations increases D-serine is not known, these results strongly suggest that SR and D-serine are fundamentally involved in both the pre-symptomatic and progression phases of disease, and offer a direct link between mutant SOD1 and a glial-derived toxic mediator.  相似文献   

12.
NMDA receptors are activated after binding of the agonist glutamate to the NR2 subunit along with a co-agonist, either L-glycine or D-serine, to the NR1 subunit. There is substantial evidence to suggest that D-serine is the most relevant co-agonist in forebrain regions and that alterations in D-serine levels contribute to psychiatric disorders. D-serine is produced through isomerization of L-serine by serine racemase (Srr), either in neurons or in astrocytes. It is released by astrocytes by an activity-dependent mechanism involving secretory vesicles. In the present study we generated transgenic mice (SrrTg) expressing serine racemase under a human GFAP promoter. These mice were biochemically and behaviorally analyzed using paradigms of anxiety, depression and cognition. Furthermore, we investigated the behavioral effects of long-term administration of D-serine added to the drinking water. Elevated brain D-serine levels in SrrTg mice resulted in specific behavioral phenotypes in the forced swim, novelty suppression of feeding and olfactory bulbectomy paradigms that are indicative of a reduced proneness towards depression-related behavior. Chronic dietary D-serine supplement mimics the depression-related behavioral phenotype observed in SrrTg mice. Our results suggest that D-serine supplementation may improve mood disorders.  相似文献   

13.
De Miranda J  Santoro A  Engelender S  Wolosker H 《Gene》2000,256(1-2):183-188
High levels of D-serine are found in mammalian brain, where it is an endogenous agonist of the strichinine-insensitive site of N-methyl D-aspartate type of glutamate receptors. D-serine is enriched in protoplasmic astrocytes that occur in gray matter areas of the brain and was shown to be synthesized from L-serine. We now report cloning and expression of human serine racemase, an enzyme that catalyses the synthesis of D-serine from L-serine. The enzyme displays a high homology to the murine serine racemase. It contains a pyridoxal 5'-phosphate attachment sequence similar to bacterial biosynthetic threonine dehydratase. Northern-blot analysis show high levels of human serine racemase in areas known to contain large amounts of endogenous D-serine, such as hippocampus and corpus callosum. Robust synthesis of D-serine was detected in cells transfected with human serine racemase, demonstrating the conservation of D-amino acid metabolism in humans. Serine racemase may be a therapeutic target in psychiatric diseases as supplementation of D-serine greatly improves schizophrenia symptoms. We identify the human serine racemase genomic structure and show that the gene encompasses seven exons and localizes to chromosome 17q13.3. Identification of the intron-exon boundaries of the human serine racemase gene will be useful to search for mutations in neuropsychiatric disorders.  相似文献   

14.
D-Serine is known to act as an endogenous co-agonist of the N-methyl-D-aspartate receptor in the mammalian brain and is endogenously synthesized from L-serine by a pyridoxal 5'-phosphate-dependent enzyme, serine racemase. Though the soil-living mycetozoa Dictyostelium discoideum possesses no genes homologous to that of NMDA receptor, it contains genes encoding putative proteins relating to the D-serine metabolism, such as serine racemase, D-amino acid oxidase, and D-serine dehydratase. D. discoideum is an attractive target for the elucidation of the unknown functions of D-serine such as a role in cell development. As part of the elucidation of the role of D-serine in D. discoideum, we cloned, overexpressed, and examined the properties of the putative serine racemase exhibiting 46% amino acid sequence similarity with the human enzyme. The enzyme is unique in its stimulation by monovalent cations such as Na(+) in addition to Mg(2+) and Ca(2+), which are well-known activators for the mammalian serine racemase. Mg(2+) or Na(+) binding caused two- to ninefold enhancement of the rates of both racemization and dehydration. The half-maximal activation concentrations of Mg(2+) and Na(+) were determined to be 1.2?μM and 2.2?mM, respectively. In the L-serine dehydrase reaction, Mg(2+) and Na(+) enhanced the k (cat) value without changing the K (m) value. Alanine mutation of the residues E207 and D213, which correspond to the Mg(2+)-binding site of Schizosaccharomyces pombe serine racemase, abolished the Mg(2+)- and Na(+)-dependent stimulation. These results suggest that Mg(2+) and Na(+) share the common metal ion-binding site.  相似文献   

15.
Excitotoxicity has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). More recently, glial involvement has been shown to be essential for ALS-related motoneuronal death. Here, we identified an N-methyl-D-aspartate (NMDA) receptor co-agonist, D-serine (D-Ser), as a glia-derived enhancer of glutamate (Glu) toxicity to ALS motoneurons. Cell death assay indicated that primary spinal cord neurons from ALS mice were more vulnerable to NMDA toxicity than those from control mice, in a D-Ser-dependent manner. Levels of D-Ser and its producing enzyme, serine racemase, in spinal cords of ALS mice were progressively elevated, dominantly in glia, with disease progression. In vitro, expression of serine racemase was induced not only by an extracellular pro-inflammatory factor, but also by transiently expressed G93A-superoxide dismutase1 in microglial cells. Furthermore, increases of D-Ser levels were also observed in spinal cords of both familial and sporadic ALS patients. Collectively, Glu toxicity enhanced by D-Ser overproduced in glia is proposed as a novel mechanism underlying ALS motoneuronal death, and this mechanism may be regarded as a potential therapeutic target for ALS.  相似文献   

16.
D-Serine is a unique endogenous substance enriched in the brain at the exceptionally high concentrations as a free D-amino acid in mammals throughout their life. Peripheral tissues and blood contain low or trace levels of the D-amino acid. In the nervous systems, D-serine appears to act as an intrinsic coagonist for the N-methyl-D-aspartate type glutamate receptor (NMDA receptor) based upon the following characteristics: (i) D-serine stereoselectively binds to and stimulates the glycine-regulatory site of the NMDA receptor consisting of GRIN1/GRIN2 subunits more potently than glycine with an affinity and ED50 at high nanomolar ranges, (ii) the selective elimination of D-serine in brain tissues attenuates the NMDA receptor functions, indicating an indispensable role in physiological activation of the glutamate receptor, and (iii) the distribution of D-serine is uneven and closely correlated with that of the binding densities of the various NMDA receptor sites, and especially of the GRIN2B subunit in the brain. Moreover, d-serine exerts substantial influence on the GRIN1/GRIN3-NMDA and δ2 glutamate receptor. In the brain and retina, metabolic processes of D-serine, such as biosynthesis, extracellular release, uptake, and degradation, are observed and some candidate molecules that mediate these processes have been isolated. The fact that the mode of extracellular release of D-serine in the brain differs from that of classical neurotransmitters is likely to be related to the detection of D-serine in both glial cells and neurons, suggesting that d-serine signals could be required for the glia-synapse interaction. Moreover, the findings from the basic experiments and clinical observations support the views that the signaling system of endogenous free D-serine plays important roles, at least, through the action on the NMDA receptors in the brain wiring development and the regulation of higher brain functions, including cognitive, emotional and sensorimotor function. Based upon these data, aberrant D-serine-NMDA receptor interactions have been considered to be involved in the pathophysiology of a variety of neuropsychiatric disorders including schizophrenia and ischemic neuronal cell death. The molecular and cellular mechanisms for regulating the D-serine signals in the nervous system are, therefore, suitable targets for studies aiming to elucidate the causes of neuropsychiatric disorders and for the development of new treatments for intractable neuropsychiatric symptoms.  相似文献   

17.
It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases.  相似文献   

18.
D-Amino Acids as Putative Neurotransmitters: Focus on D-Serine   总被引:2,自引:0,他引:2  
Of the twenty amino acids in the mammalian body, only serine and aspartate occur in D-configuration as well as L-configuration in significant amount. D-serine is selectively concentrated in the brain, localized to protoplasmic astrocytes that ensheath synapses and distributed similarly to N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. D-serine has been found to function as an endogenous ligand for the glycine site of the NMDA receptor. Evidences for this include the greater potency of D-serine to activate this site than glycine, and D-amino acid oxidase, which degrades D-serine as well as other neutral D-amino acids, markedly attenuates NMDA neurotransmission. D-serine is also formed by serine racemase, a recently cloned enzyme that converts L-serine to D-serine. Thus, in many ways D-serine fulfills criteria for defining its functionality as a neurotransmitter and challenges the dogma relating to neurotransmission, for it is the unnatural isomeric form of an amino acid derived from glia rather than neurons.  相似文献   

19.
d -Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l -serine to d -serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d -serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d -serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT-PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d -serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d -serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d -serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d -serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d -serine during retinal development.  相似文献   

20.
Yoshimura T  Goto M 《The FEBS journal》2008,275(14):3527-3537
D-serine serves as a co-agonist of the N-methyl D-aspartate receptor in mammalian brains, and its behavior is probably related to neurological disorders such as schizophrenia, Alzheimer's disease and amyotrophic lateral sclerosis. D-Serine is synthesized by a pyridoxal 5'-phosphate (PLP)-dependent serine racemase. In this minireview, we provide a detailed discussion on the reaction mechanism of the PLP-dependent amino acid racemase on the basis of its 3D structure. We compared the eukaryotic serine racemase with bacterial alanine racemase, the best-studied enzyme among the PLP-dependent amino acid racemases, and thus suggested a putative reaction mechanism for mammalian D-serine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号