首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

2.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

3.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

4.
Nitrogen (N) dynamics were evaluated from 1 June 1995 through 31 May 1996 within the Arbutus Lake watershed in the Adirondack Mountains of New York State, USA. At the Arbutus Lake outlet dissolved organic nitrogen (DON), NO3 - and NH4 + contributed 61%, 33%, and 6% respectively, to the total dissolved nitrogen (TDN) flux (259 mol ha-1 yr-1). At the lake inlet DON, NO3 -, and NH4 - constituted 36%, 61%, and 3% respectively, of TDN flux (349 mol ha-1 yr-1). Differences between the factors that control DON, NO3 +, and NH4 + stream water concentrations were evaluated using two methods for estimating annual N flux at the lake inlet. Using biweekly sampling NO3 - and NH4 + flux was 10 and 4 mol ha-1 yr-1 respectively, less than flux estimates using biweekly plus storm and snowmelt sampling. DON flux was 18 mol ha-1 yr-1 greater using only biweekly sampling. These differences are probably not of ecological significance relative to the total flux of N from the watershed (349 mol ha-1 yr-1). Dissolved organic N concentrations were positively related to discharge during both the dormant (R2 = 0.31; P < 0.01) and growing season (R2 = 0.09; P < 0.01). There was no significant relationship between NO3 - concentration and discharge during the dormant season, but a significant negative relationship was found during the growing season (R2 = 0.29; P < 0.01). Biotic controls in the growing season appeared to have had a larger impact on stream water NO3 - concentrations than on DON concentrations. Arbutus Lake had a major impact on stream water N concentrations of the four landscape positions sampled, suggesting the need to quantify within lake processes to interpret N solute losses and patterns in watershed-lake systems.  相似文献   

5.
Nutrient enrichment threatens river ecosystem health in urban watersheds, but the influence of urbanization on spatial variation in nutrient concentrations and nutrient limitation of biofilm activity are infrequently measured simultaneously. In summer 2009, we used synoptic sampling to measure spatial patterns of nitrate (NO3 ), ammonium (NH4 +), and soluble reactive phosphorus (SRP) concentration, flux, and instantaneous yield throughout the Bronx River watershed within New York City and adjacent suburbs. We also quantified biofilm response to addition of NO3 , phosphate (PO4 3−), and NO3  + PO4 3− on organic and inorganic surfaces in the river mainstem and tributaries. Longitudinal variation in NO3 was low and related to impervious surface cover across sub-watersheds, but spatial variation in NH4 + and SRP was higher and unrelated to sub-watershed land-use. Biofilm respiration on organic surfaces was frequently limited by PO4 3− or NO3  + PO4 3−, while primary production on organic and inorganic surfaces was nutrient-limited at just one site. Infrequent NO3 limitation and low spatial variability of NO3 throughout the watershed suggested saturation of biological N demand. For P, both higher biological demand and point-sources contributed to greater spatial variability. Finally, a comparison of our data to synoptic studies of forested, temperate watersheds showed lower spatial variation of N and P in urban watersheds. Reduced spatial variation in nutrients as a result of biological saturation may represent an overlooked effect of urbanization on watershed ecology, and may influence urban stream biota and downstream environments.  相似文献   

6.
Ecologists have long used stream water chemistry records to infer hillslope processes, although a great deal of biogeochemical processing of soil water is known to occur both downslope and in-stream. We report the effects of forest succession on C and N export in the west central Cascades of Oregon, a region of low anthropogenic N input. In a previous study, watersheds with forests of differing ages showed a number of significant differences in stream nutrient export. This study was intended to establish whether differences in stream chemistry were due to variation in N retention by forests of different ages, and thus we measured C and N in lysimeter water draining 12 forest plots, which were categorized into four different stages of successional development. Mean total dissolved nitrogen (TDN) concentrations in deep soil solutions were 2.5 times higher than stream water TDN observed in the previous study, suggesting that denitrification and/or N uptake occurred in the streams or the riparian zone. Although there was a trend for highest soil solution N concentrations in the second youngest (stem exclusion) stage, this trend was significant only for NH4-N. We previously found that streamwater NO3-N concentrations averaged 46% of TDN export and was significantly higher in the young than in the older watersheds, however, soil solution NO3-N concentration averaged 2% of TDN concentration and did not vary with succession. Although NH4-N concentrations were very low (~5 μg L?1) in stream water, NH4-N in lysimeter samples averaged 35% of TDN. While stream water dissolved organic nitrogen (DON) concentrations averaged 30% of TDN concentrations, soil solution DON concentrations averaged 64% of TDN concentration; neither varied with succession. Even with sharp differences in both forest floor and mineral soil C:N ratios and C contents among plots, no measure of N export from the forest stands was significantly related to forest floor or mineral soil characteristics. This is most likely because forest floor C:N ratios all greatly exceeded the reported low C:N ratios required to allow significant N leakage. Taken together, these results suggest that riparian dynamics, in-stream processing, or perhaps even the presence of near-stream alders significantly alter concentrations of all N species between the soil solution and stream water.  相似文献   

7.
Biogeochemical processes in the groundwater discharge zone of urban streams   总被引:1,自引:0,他引:1  
The influence of biogeochemical processes on nitrogen and organic matter transformation and transport was investigated for two urban streams receiving groundwater discharge during the dry summer baseflow period. A multiple lines of evidence approach involving catchment-, and stream reach-scale investigations were undertaken to describe the factors that influence pore water biogeochemical processes. At the catchment-scale gaining stream reaches were identified from water table mapping and groundwater discharge estimated to be between 0.1 and 0.8 m3 m?2 d?1 from baseflow analysis. Sediment temperature profiles also suggested that the high groundwater discharge limited stream water infiltration into the sediments. At the stream reach-scale, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were higher in stream water than in groundwater. However, DOC and DON concentrations were greatest in sediment pore water. This suggests that biodegradation of sediment organic matter contributes dissolved organic matter (DOM) to the streams along with that delivered with groundwater flow. Pore water ammonium (NH4 +) was closely associated with areas of high pore water DOM concentrations and evidence of sulfate (SO4 2?) reduction (low concentration and SO4:Cl ratio). This indicates that anoxic DOM mineralization was occurring associated with SO4 2? reduction. However the distribution of anoxic mineralization was limited to the center of the streambed, and was not constrained by the distribution of sediment organic matter which was higher along the banks. Lower sediment temperatures measured along the banks compared to the center suggests, at least qualitatively, that groundwater discharge is higher along the banks. Based on this evidence anoxic mineralization is influenced by groundwater residence time, and is only measurable along the center of the stream where groundwater flux rates are lower. This study therefore shows that the distribution of biogeochemical processes in stream sediments, such as anoxic mineralization, is strongly influenced by both the biogeochemical conditions and pore water residence time.  相似文献   

8.
Population growth and urbanization have increased the potential habitats, and consequently the abundance of Culex quinquefasciatus, the southern house mosquito, a vector of West Nile Virus in urban areas. Water quality is critical in larval habitat distribution and in providing microbial food resources for larvae. A mesocosm experiment was designed to demonstrate which specific components of water chemistry are conducive to larval Culex mosquitoes. Dose–response relationships between larval development and NO3, NH4, and PO4 concentrations in stream water were developed through this experiment to describe the isolated effects of each nutrient on pre‐adult development. The emergence pattern of Culex mosquitoes was found to be strongly related to certain nutrients, and results showed that breeding sites with higher PO4 or NO3 concentrations had higher larval survival rates. High NO3 concentrations favor the development of male mosquitoes and suppress the development of female mosquitoes, but those adult females that do emerge develop faster in containers with high NO3 levels compared to the reference group. The addition of PO4 in the absence of nitrogen sources to the larval habitat slowed larval development, however, it took fewer days for larvae to reach the pupal stage in containers with combinations of NO3 and PO4 or NH4 and PO4 nutrients. Results from this study may bolster efforts to control WNV in urban landscapes by exploring water quality conditions of Culex larval habitats that produce adult mosquitoes.  相似文献   

9.
Seasonal and diurnal variations of in-stream NO3-N concentration oscillations were studied through high-frequency measurements of streamwater’s physical, chemical parameters (in-stream NO3-N concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km2 forested Pade? stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal data resolution (15-min interval) enabled identification of the factors responsible for seasonal variability in the diurnal pattern of the streamwater NO3-N concentrations versus seasonal and diurnal behavior of meteorological and other water chemistry constituents. The observed seasonal variability of in-stream NO3-N daily oscillations indicates the important role of primary production uptake, particularly during seasons when deciduous vegetation is dormant and light levels in the stream are high. Highest daily NO3-N concentration amplitudes (0.3 mg/l-N) and daily changes in the NO3-N flux (0.4–0.5 g/s-N) were observed in spring; the NO3-N concentration oscillations in summer showed a considerably smaller effect of the in-stream uptake (maximum NO3-N daily concentration amplitude 0.1 mg/l-N; daily change in the NO3-N flux 0.02 g/s-N). Seasonal shifts in the timing of daily maximum (up to 6 h) and minimum NO3-N concentrations (between 1 and 3 h) provided some additional indications of seasonal changes in the in-stream primary production uptake and its relation to the terrestrial component of the forested watershed.  相似文献   

10.
Lake Kinneret (LK) is a monomictic lake that has undergone significant biological and chemical changes over the last three decades of the twentieth century. The transition between the 1970s and the 1980s attracted a lot of scientific attention as it was marked by significant changes in the ecology of the lake. In the early 1980s, phytoplankton biomass increased, apparently in response to an increase in the external soluble reactive phosphorus (SRP) load. This period was marked by a rise in hypolimnetic levels of ammonium (NH4) and SRP as well as surface water dissolved oxygen (DO) and pH. Cconcomitantly, in surface waters in winter levels of NH4 increased and NO3 decreased. In this study interrelationships amongst these observations were examined with a mass balance modelling approach, including simulation of individual nutrient sources and sinks, focusing on nitrogen fluxes in winter. The step-like rise in phytoplankton biomass in 1981 may have been triggered by the increase in winter external loads of SRP, as P is likely to be the growth-limiting nutrient during this season. The additional P load led to a sequence of changes including greater summer phytoplankton biomass, followed by enhanced sedimentation of organic matter. Furthermore, higher organic matter mineralization fluxes within the hypolimnion resulted in elevated levels of NH4 and SRP in this layer through the 1980s, with a feedback to productivity in the trophogenic zone following seasonal destratification in early winter. In an apparent transition period (late 1970s to early 1980s), an increase in the modelled rate of nitrate (NO3) production occurred via nitrification together with increased uptake of the additional nitrate by phytoplankton. These results are consistent with increased phytoplankton abundance and elevated levels of surface water NH4 and DO during this period. Through this period the increase in phytoplankton uptake of NO3 predominated over the increase in nitrification, and NO3 concentrations in the 1980s were reduced compared with the previous decade, with increased partitioning of N in biomass and NH4.  相似文献   

11.
Yamamoto  Tamiji  Ikeda  Hiroyuki  Hara  Tamotsu  Takeoka  Hidetaka 《Hydrobiologia》2000,435(1-3):135-142
Movement of water overlying the sediments has not been taken into consideration in most of the experiments conducted to estimate the dissolved material flux from the sediment. Even in recent experiments that incorporated the stirring motion, interpretation of the data is difficult, because the mixing rate used may be different from actual mixing rate in the field. We propose a method to estimate the in situ mixing rate that should be used to set the flow rate in a flow-through core incubation system. The flow rate is calculated from the vertical mixing rate of the water that is deduced from the heat diffusivity. Release rates of NO3+NO2–N obtained from our flow-through incubation system were higher by 1–3 orders of magnitude than those from the conventional diffusion calculation method that estimates the flux from the gradient of nutrient concentration across the sediment-water interface. Increase in NO3+NO2–N flux is considered to be due to intensification of the nitrification process as a result of an increase in dissolved oxygen (DO) supply with the motion of water. DO supply is also considered to be an important factor controlling macrofaunal abundance and consequently their excretory contributions to the fluxes of dissolved organic nitrogen as well as NH4–N. From this point of view, we strongly recommend the application of heat and mass balance theory to estimate nitrogen flux using a flow-through experimental system.  相似文献   

12.
Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3 ?) by eliminating primary production, reducing respiration rates and organic matter availability, and increasing specific discharge. We tested these predictions by measuring whole-stream NO3 ? removal rates using 15NO3 ? isotope tracer releases in paired buried and open reaches in three streams in Cincinnati, Ohio (USA) during four seasons. Nitrate uptake lengths were 29 times greater in buried than open reaches, indicating that buried reaches were less effective at retaining NO3 ? than open reaches. Burial suppressed NO3 ? retention through a combination of hydrological and biological processes. The channel shape of two of the buried reaches increased specific discharge which enhanced NO3 ? transport from the channel, highlighting the relationship between urban infrastructure and ecosystem function. Uptake lengths in the buried reaches were further lengthened by low stream biological NO3 ? demand, as indicated by NO3 ? uptake velocities 17-fold lower than that of the open reaches. We also observed differences in the periphyton enzyme activity between reaches, indicating that the effects of burial cascade from the microbial to the ecosystem scale. Our results suggest that stream restoration practices involving “daylighting” buried streams have the potential to increase N retention. Further work is needed to elucidate the impacts of stream burial on ecosystem functions at the larger stream network scale.  相似文献   

13.
Ground water inputs and outputs of N were studied for a small ground water discharge swamp situated in a headwater drainage basin in southern Ontario, Canada. Darcy's equation with data for piezometers was used to measure inputs of shallow local ground water at the swamp margin and deep regional ground water beneath the swamp. Ground water flux was also quantified by measuring ground water discharge to the outlet stream draining the swamp in combination with a chemical mixing model to separate shallow and deep ground water components based on chloride differences. Estimates of shallow ground water flux determined by these two approaches agreed closely however, the piezometer data seriously underestimated the deep ground water input to the swamp. An average ground water input-output budget of total N (TN) total organic nitrogen (TON) ammonium (NH4 +-N) and nitrate (NO3 --N) was estimated for stream base flow periods which occurred on an average of 328 days each year during 1986–1990. Approximately 90% of the annual NO3 --N input was contributed by shallow ground water at the swamp margin. Deep ground water represented about 65% of the total ground water input and a similar proportion of TON and NH4 +-N inputs. Annual ground water NO3 --N inputs and outputs were similar whereas NH4 +-N retention was 4 kg ha-1 representing about 68% of annual ground water input. Annual TON inputs in ground water exceeded outputs by 7.7 kg ha (27%). The capacity of the swamp to regulate ground water N fluxes was influenced by the N chemistry of ground water inputs and the hydrologic pathways of transport within the swamp.  相似文献   

14.
Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management.  相似文献   

15.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

16.
The sources of groundwater and the patterns in groundwater dissolved N and DOC concentration in the floodplain of a subtropical stream (Wollombi Brook, New South Wales) were studied over a 2-year period using three piezometer transects. While the stream was generally a discharge area for regional groundwater, this source represented only a small contribution to either the water or N budget of the alluvial aquifer. Groundwater–surface water interactions appeared mostly driven by cycles of bank recharge and discharge between the stream and the alluvial aquifer. DON and NH4+ were the principal forms of dissolved N in groundwater, consistent with the primarily suboxic to anoxic conditions in the alluvial aquifer. A plume of groundwater NO3 was found at one transect where oxic conditions persisted within the riparian zone. The origin of the NO3 plume was hypothesized to be soil NO3 from the riparian zone flushed to the water table during recharge events. When present, NO3 did not reach surface water because conditions in the alluvial aquifer in the vicinity of the stream were always reduced. The concentration of groundwater DOC was variable across the floodplain and may be related to the extent of the vegetation cover. Overall, transformation and recycling of N during lateral exchange processes, as opposed to discharge of new N inputs from regional groundwater, appears to primarily control N cycling during groundwater–surface water interactions in this subtropical floodplain.  相似文献   

17.
The topography, morphology, hydrography, temperature conditions and water chemistry of an acid thermal lake, Lake Rotowhero. North Island, New Zealand, were studied and related to lake biology. Results are given for analyses of O2, pH, conductivity, Ca, Mg, Na, K, SO4, Cl, Si, total-P, reactive-P, NH4-N, NO3 N, NO2-N As, Fe, Mn, Zn, Cu, total dissolved solids, chlorophyll and total pigment. Sediment mineralogy and total carbon content are mentioned.  相似文献   

18.
K. R. Reddy 《Hydrobiologia》1981,85(3):201-207
A field study was conducted during the months of October, January, May, and July (1979–80) to examine the diel variations in dissolved O2 (DO), pH, dissolved CO2, bicarbonate and carbonate alkalinity, NH4-N, NO3-N, and PO4-P concentration, and conductivity (EC) of the water in six aquatic systems. Water in hyacinth (Eichhornia crassipes) ponds showed very little or no diel or seasonal variations in DO, pH, dissolved CO2, and bicarbonate alkalinity. Dissolved O2 concentration of the water under floating hyacinth cover was in the range of 0.2–3.0 µg/ml, while dissolved CO2 levels were in the range of 10–35 µg/ml. In the aquatic systems with no floating vegetation, i.e., elodea (Egeria densa) pond, cattail (Typha sp.) pond, control pond (filamentous algae and Chara spp.), and eutrophic lake (algae in Lake Apopka), DO and pH of the water increased during mid-day and decreased during the night. Dissolved O2 levels in these ponds were in the range of 5–20 µg/ml during mid-day and 2–8 µg/ml during the night, while pH of the water was in the range of 8–9.5 during mid-day and decreased to 7–8 during the night. An inverse relationship was observed between bicarbonate and carbonate alkalinity of the water in the aquatic systems with no floating vegetation while no carbonates were detected in the water with floating hyacinth plants. Ammonium N, NO3-N and PO4-P concentration of the water in these aquatic systems showed very little or no diel variations.Florida Agricultural Experiment Stations Journal Series No. 2788.  相似文献   

19.
We examined the effect of sustained stream bank seepage during base flow conditions on the pore water nitrogen biogeochemistry of two riparian zones in lowland agricultural areas in southern Ontario, Canada. Nitrate, ammonium and dissolved oxygen concentrations in riparian subsurface water over a two-year period showed well-organized spatial patterns along stream bank seepage flow paths that extended seasonally up to 25 m inland. High levels of dissolved oxygen and NO3 in stream inflow were depleted rapidly at the stream bank interface suggesting the occurrence of aerobic microbial respiration followed by denitrification. A zone of NH4+ accumulation persisted in more anaerobic sediments inland from the bank margin, although the magnitude and intensity of the pattern varied seasonally. A bromide tracer and NO3 co-injection at the stream bank interface indicated that bank seepage occurred along preferential flow paths in a poorly sorted gravel layer in the two riparian zones. Depletion of NO3 in relation to co-injected bromide confirmed that the bank margin was a hot spot of biogeochemical activity within the riparian zone. Conceptual models of humid temperate riparian zones have focused on nitrogen biogeochemistry in relation to hillslope to stream hydrologic flow paths. However, our results suggest that sustained stream bank inflow during low flow conditions can exert a dominant control on riparian nitrogen cycling in lowland landscapes where level riparian zones bounded by perennial streams receive limited subsurface inflows from adjacent slopes.  相似文献   

20.
城市景观组分影响水质退化的阈值研究   总被引:2,自引:0,他引:2  
运用景观格局与水质监测方法评价城市景观变化对河流水质的影响,是当前景观格局-效应研究的热点问题.为实现城市发展目标与水环境保护目标的统一,需要科学判断城市景观变化对水质的影响程度与范围,特别是以城市不透水表面为代表的景观组分变化,是目前水质退化研究中的核心对象,而对水质退化的景观阈值研究目前尚存争论.基于截面数据进行统计分析,构建阈值判定方法,选择深圳市为案例研究区,研究快速城市化地区的河流水质退化的景观阈值水平.结果表明,在深圳市,河流缓冲区宽度为100-200 m时,景观变化对水质显著性影响最高(P<0.001).缓冲区内,景观变化与耗氧、营养盐等类指标呈指数关系,具有显著性,是这类指标变化的最主要影响因素;同时,景观变化与有毒物质及重金属等类指标呈指数关系,具有显著性,但并非这类指标变化的最主要因素.影响水质退化的不透水表面比例阈值水平介于38.2%-50%之间,最小阈值水平为38.2%,即当流域缓冲区内不透水表面百分比超过38.2%时,河流水质显著退化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号