首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
小麦叶锈病抗性基因在山西的有效性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采自山西省各地的小麦叶锈菌菌株分别接种在含有已知抗叶锈病基因的小麦近等基因系(或单基因系)上,测定其毒性频率,根据已知抗病基因对叶锈菌群体的抗性程度,对其进行抗性效能的评价。结果表明:抗性基因Lr9、Lr19、Lr24、Lr38的毒性频率较低,分别为23.08%、16.03%、12.82%和1.92%,为山西省小麦叶锈菌的有效抗病基因。在发现的诸多毒性类型中,THT、THK、PHT、TRT的出现频率居前四位,分别为19.23%、8.97%、7.05%、5.77%,为山西省目前小麦叶锈菌群体中的优势毒性类型。  相似文献   

3.
筛选利用小麦微卫星标记追踪簇毛麦各条染色体   总被引:11,自引:0,他引:11  
张伟  高安礼  周波  陈佩度 《遗传学报》2006,33(3):236-243
选用定位于普通小麦7个部分同源群上的276对微卫星引物对普通小麦中同春和簇毛麦的基因组DNA进行扩增分析,有148对引物可在两个物种间检测到多态性。利用上述显示多态性的引物进一步对7个中国春-簇毛麦二体附加系进行扩增分析,筛选出分别可用来追踪簇毛麦1V至7V染色体的引物wmc49(1BS)、wmc25(2BS)、gdm36(3DS)、gdml45(4AL)、wmc233(5DS)、wmc256(6AL)和gwm344(7BL)。此外还发现6DS上的微卫星引物gwm469可以用来追踪簇毛麦的2V染色体;2DS上的微卫星引物gdm107可用来追踪簇毛麦的6V染色体。进一步用涉及不同簇毛麦和小麦背景的小麦一簇毛麦染色体附加系、代换系和易位系进行扩增分析,这些微卫星标记也可用来鉴定簇毛麦的各条染色体。因此,这然簇毛麦染色体特异的微卫星标记可用来追踪普通小麦背景中的簇毛麦染色体。  相似文献   

4.
以抗叶锈病小麦品系Hussar的衍生品系H103P为抗病亲本,郑州5389为感病亲本杂交得到的234个F4家系群体为材料,进行抗叶锈病基因定位分析。利用带有不同毒力的16个叶锈菌生理小种进行苗期抗叶锈性鉴定,结果表明周麦22及携带Lr13、Lr23和Lr16单基因的载体品种对16个叶锈菌生理小种均表现感病,H103P对除PHKT外的所有小种表现抗病,表明H103P抗叶锈性与携带Lr13、Lr23和Lr16单基因的载体品种不同。利用5种强毒力混合菌种(THTT、PHTT~((2))、FHJS~((2))、PHKS、PHTT~((1)))进行田间抗叶锈性鉴定,结果表明H103P、SAAR、周麦22以及Lr13载体品种田间表现均为高抗,234个F4家系群体抗性呈连续性分布,在田间表现出良好的成株期抗性。抗叶锈病基因定位分析结果表明,在小麦品系H103P中定位到1个位于小麦2BS染色体上的抗叶锈病基因,暂命名为LrHu。利用含有Lr13的特异性引物对H103P和郑州5389的扩增产物进行特异性酶切,结果发现小麦品系H103P含有抗叶锈病基因Lr13。小麦抗叶锈病基因LrHu与Lr13的关系还需...  相似文献   

5.
6.
小麦白粉病抗性基因的导入及AFLP分析   总被引:6,自引:0,他引:6       下载免费PDF全文
本研究以簇毛麦为抗源,采用杂交与辐射、组织培养相结合的方法,将簇毛麦的抗白粉病基因导入小麦,选育出高产、抗白粉病的小麦新品种和农艺性状较好、抗白粉病的小麦新种质。经AFLP分析,确定4个抗白粉病种质均为含有一段簇毛麦DNA的易位系。并得到3个可能与抗性基因紧密连锁的标记。  相似文献   

7.
ph1b基因对簇毛麦遗传物质导入普通小麦的影响@陈静$中国科学院成都生物研究所!成都610041ph1b基因;;小麦;;簇毛麦  相似文献   

8.
用离体叶段接种方法鉴定了11个四倍体小麦一山羊草双二倍体、波斯小麦PS5、硬粒小麦DR147、5份山羊草、杂交高代材料Am9/莱州953*^2F5和(DR147/Ael4)//莱州953*^2F4对20个具有不同毒力白粉菌株的抗谱。通过与含有已知抗病基因品种或品系的反应模式比较,推测Am9/莱州953*^2F5含有Pm4b,波斯小麦PS5含有Pm4b与一个未知抗病基因组合;(DR147/Ael4)//莱州953*^2F4和硬粒小麦DR147含有Pm4a和一个未知抗病基因组合;尾状山羊草Ael4和小伞山羊草Y39抗所有白粉菌株,由于迄今还没有在尾状山羊草和小伞山羊草中鉴定出抗白粉病基因,推测这2份山羊草含有新的抗白粉病基因。除Am9外,在其它双二倍体中波斯小麦或硬粒小麦的抗性部分受到抑制。山羊草的抗性部分或完全量到抑制。  相似文献   

9.
利用形态学、细胞学以及SSR标记技术对从硬簇麦和Am3的杂种后代中选育的种质系‘山农030713'进行了鉴定,结果表明:种质系‘山农030713'大田生长整齐一致,农艺性状较好,且对白粉病免疫;其根尖细胞染色体数目为2n=42,花粉母细胞减数分裂中期Ⅰ(PMC M Ⅰ)染色体构型为2n=21Ⅱ;它与普通小麦的杂种F1PMC MⅠ多数细胞中形成21个二价体,且常有四价体出现,可能伴有染色体的结构变异;SSR分析证明‘山农030713'基本染色体组成为AABBDD,引物Xgwm99-1A在‘山农030713'中扩增出簇毛麦的特异带,表明‘山农030713'中有来自于簇毛麦的遗传物质,此特异带可作为识别‘山农030713'的SSR标记.综合形态学、细胞学和SSR分析结果推测,‘山农030713'可能是一个小麦-簇毛麦易位系.  相似文献   

10.
小麦抗叶锈病近等基因系TcLr41 SSH文库构建与分析   总被引:1,自引:1,他引:1       下载免费PDF全文
以小麦抗叶锈病近等基因系TcLr41和感病亲本Thatcher的叶片cDNA分别作为试验方和驱动方,利用抑制差减杂交技术,构建了一个包含2544个克隆的差减文库。随机提取阳性克隆质粒DNA后经PCR检测,插入片段大部分集中在200~1000bp之间,证明所构建的文库符合要求。在功能已知的基因中,推测过氧化氢酶(catalasc)基因、抗秆锈病基因(rust resistance gene)、铜蓝结合蛋白(blue copper—binding protein)基因、锌指蛋白(ring zinc finger protein)基因、胁迫反应蛋白(stress responsive protein)基因等可能是TcLr41中抗病相关差异表达基因。  相似文献   

11.
从小麦野生近缘属——粗山羊草中挖掘小麦条锈病抗病基因, 拓展小麦抗病性的遗传基础。利用抗小麦条锈病与感小麦条锈病的粗山羊草间杂交, 从粗山羊草[Aegilops tauschii (Coss.) Schmal] Y206中鉴定出1个显性抗小麦条锈病基因, 暂定名为YrY206。应用分离群体分组法(Bulked segregant analysis, BSA)筛选到Wmc11a、Xgwm71c、Xgwm161和Xgwm183标记, 与该基因之间的遗传距离分别为4.0、3.3、1.5和9.3 cM。根据连锁标记所在小麦微卫星图谱的位置, YrY206被定位在3DS染色体上。分析基因所在染色体的位置、抗病性特征, 认为YrY206是一个新的抗小麦条锈病基因。  相似文献   

12.
Wheat is a vital dietary component for human health and widely consumed in the world. Wheat rusts are dangerous pathogens and contribute serious threat to its production. In present study, PCR-Based DNA Markers were employed to check the rust resistance genes among 20 wheat genotypes and 22 markers were amplified. NTSYS-pc 2.2 was used to calculate genetic diversity and Nei and Li''s coefficients ranged from 0.55 to 0.95. Cluster analysis was obtained using UPGMA (Unweighted Pair Group Method of Arithmetic Average) algorithm. Maximum no. of genes (23) was amplified from TW-760010 genotype whereas minimum no of genes (14) were amplified from TW-76005 genotype. The data gained from present study open up new ways to produce new varieties by breeding rust resistant germplasm to avoid the economic and food loss and varieties with improved characteristics.  相似文献   

13.
    
Puccinia triticina (Pt), the causal agent of leaf rust evolves through forming new pathotypes that adversely affect the growth and yield of wheat cultivars. Therefore, continued production of resistant varieties through exploring novel sources of resistance in wild relatives which are abundantly found in Iran and the neighbouring regions is a major task in wheat breeding programs. The aim of the present study was to explore 60 wild wheat genotypes selected from the species Triticum monococcum, Aegilops tauschii, Ae. neglecta, Ae. cylindrica, Ae. triuncialis, Ae. umbellulata, Ae. speltoides, Ae. columnaris, Ae. crassa and Ae. ventricosa for resistance to leaf rust. The cultivar ‘Boolani’ and Thatcher near-isogenic lines were used as controls. Two-week-old seedlings were inoculated using 10 Pt pathotypes, and the infection types were recorded. The genotypes were also analysed for polymorphism using six sequence-tagged sites (STS) and sequence characterized amplified region (SCAR) markers. Forty-eight genotypes produced high infection types (3+) for two pathotypes, but the remaining genotypes produced low infection types of ‘0; =’ to ‘1+CN’ to all pathotypes. The latter included three accessions of Ae. tauschii, two accessions of each Ae. umbellulata, Ae. columnaris and Triticum monococcum, and one accession from each Ae. triuncialis, Ae. ventricosa and Ae. neglecta. Analysis for STS and SCAR markers suggested several genotypes could carry the genes Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37 or their potential orthologs in addition to unknown resistance genes. In conclusion, the identified resistant genotypes could be further characterized and used in wheat breeding programs for leaf rust resistance.  相似文献   

14.
TcLr35小麦中病程相关蛋白1基因的克隆及分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据已发表的植物病程相关蛋白1基因设计引物,利用RT-PCR技术,从被小麦叶锈菌诱导的小麦抗叶锈病基因近等基因系材料TcLr35中获得一个病程相关蛋白1基因cDNA片段,长度为489bp,3′端包含21个poly(A),暂命名为PR12。利用5′RACE技术获得了818bp的PR12全长,该基因包含495bp的开放读码框,147bp的5′非翻译区(non translated region,NTR),155bp的3′非翻译区和21bp的多聚腺苷酸尾。编码164个通读的蛋白质氨基酸序列,基因产物具有植物防御体系中病程相关蛋白SCP保守结构域,与GenBank中多个植物病程相关蛋白1基因具有较高的同源性。Southern杂交显示,该基因在小麦基因组中为单拷贝。  相似文献   

15.
    
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheatproductivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines andhigh yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines ofwheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aimsto identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. Thesegenotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashoreunder field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based onthe area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated latesown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypeswere identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NSsegment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypesBAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1,BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance andyield potential.  相似文献   

16.
利用农艺性状优良、优质的红粒小麦品种绵阳11以及2个白粒、极易穗发芽(常年穗发芽在50%以上)的小麦品系YY2和88-1643与穗发芽抗性来源于长休眠节节麦的人工合成小麦RSP杂交,对3个组合的F2单株和F3株系的穗发芽测试,从RSP×绵阳11中筛选出15个与RSP相当的纯合抗性株系和27份穗发芽接近0的F3单株;从RSP×YY2和RSP×88-1643组合中共筛选出5份穗发芽在7%以下的白粒株系.这些株系或单株相对于RSP的高秆、晚熟等不利性状已有较大改良,为节节麦抗穗发芽基因向优质或白粒小麦转移研制出了更容易利用的中间材料.  相似文献   

17.
MeOH and water extracts were obtained from 16 species of infected leaves with rust fungi belonging to 18 species in 6 families: Pucciniaceae, Melampsoraceae, Coleosporiaceae, Pileolariaceae, Phragmidiaceae, and Phakopsoraceae. All the extracts of rust-infected plants with telia showed the teliospore-inducing activity for wheat leaf rust (Puccinia recondita f. sp. tritici).  相似文献   

18.
A cloned gene sequence (Vrga1D), with features of the nucleotide-binding-site leucine-rich repeat class of disease resistance (R) gene sequence super family, was previously shown to belong to a family of five gene members derived from a Triticum ventricosum Ces. (syn. Aegilops ventricosa Tausch) segment in wheat (Triticum aestivum L.). This gene family was introgressed, together with the linked rust resistance genes Yr17, Lr37 and Sr38 from T. ventricosum, to wheat chromosome 2AS. An independently derived T. ventricosum segment carrying a leaf rust resistance gene in a French wheat cultivar, was shown to exhibit a rust resistance response equivalent to Lr37 as well as Yr17 and Sr38. DNA probes from different regions of the Vrga1D clone consistently detected the presence of RFLPs associated with the introgressed segment carrying the resistance genes Yr17, Lr37 and Sr38 present in diverse wheat genotypes from Australia, Canada, France and the UK. Our results showed that the transfer of the T. ventricosum- derived Vrga1 gene members and the rust resistance genes were always accompanied by the loss of a corresponding set of Vrga1-related gene members in recipient wheat cultivars presumed to be of homoeoallelic origin. A PCR assay, based on sequences from the 3"-untranslated region of a Vrga1 gene member isolated from the T. ventricosum donor line of the introgressed segment, was developed. The PCR assay detected the presence of the introgressed rust resistance genes across the diverse wheat backgrounds and should be useful in marker- assisted selection in wheat breeding. Received: 24 December 1999 / Accepted: 13 June 2000  相似文献   

19.
    
《Comptes rendus biologies》2019,342(5-6):154-174
Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat worldwide, including India. Growing resistant cultivars is the most cost-effective and eco-friendly approach to manage the disease. In this study, 70 publically available molecular markers were used to identify the distribution of 35 Yr genes in 68 wheat genotypes. Out of 35 Yr genes, 25 genes amplified the loci associated with Yr genes. Of the 35, 18 were all-stage resistance ASR (All-stage resistance) genes and 7 (Yr16, Yr18, Yr29, Yr30, Yr36, Yr46 & Yr59) were APR (Adult-plant resistance) genes. In the field tests, evaluation for stripe rust was carried out under artificial inoculation of Pst. Fifty-three wheat genotypes were found resistant to yellow rust (ITs 0), accounting for 77.94% of total entries. Coefficients of infection ranged from 0 to 60 among all wheat genotypes. Two genotypes (VL 1099 & VL 3002) were identified with maximum 15 Yr genes followed by 14 genes in VL 3010 and HI8759, respectively. Maximum number of all-stage resistance genes were identified in RKD 292 (11) followed by ten genes in DBW 216, WH 1184 and VL 3002. Maximum number of adult-plant resistance gene was identified in VL 3009 (6), HI 8759 (5) and Lassik (4) respectively. Genes Yr26 (69.2%), Yr2 (69.1%), Yr64 (61.7%), Yr24 (58.9%), Yr7 (52.9%), Yr10 (50%) and Yr 48 (48.5%) showed high frequency among selected wheat genotypes, while Yr9 (2.94%), Yr36 (2.94%), Yr60 (1.47%) and Yr32 (8.8%) were least frequent in wheat genotypes. In future breeding programs, race specific genes and non-race specific genes should be utilised to pyramid with other effective genes to develop improved wheat cultivars with high-level and durable resistance to stripe rust. Proper deployment of Yr genes and utilizing the positive interactions will be helpful for resistance breeding in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号