首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of 12 wk exercise training on oxidative stress were examined in elderly humans. We measured oxidative stress during a 45 min cycling test by using antipyrine hydroxylation products. Antipyrine breakdown is independent of blood flow to the liver, which is important during exercise. Furthermore, antipyrine reacts quickly with hydroxyl radicals to form para- and ortho-hydroxyantipyrine. Ortho-hydroxyantipyrine is not formed in man through the mono-oxygenase pathway of cytochrome P450. Twenty subjects (9 women; 60 +/- 3 y) participated in the training program. Thirteen subjects (5 women; 64 +/- 7 y) served as inactive controls. Subjects trained, twice a week for 1 h, at a fitness center. After 12 wk, maximal oxygen uptake (p < .005) and workload capacity (p < .001) were only significantly elevated in the training group. After 12 wk, both groups observed no change in the ratios of antipyrine hydroxylates, para- and ortho-hydroxyantipyrine, to native antipyrine. Furthermore, no differences were observed within or between groups in the exercise-induced increase in the plasma level of thiobarbituric acid reactive species. In conclusion, 12-wk training had no effect on exercise-induced oxidative stress in elderly humans as measured by free radical reaction products of antipyrine. Despite the fact that training in elderly humans improves functional capacity, it appears not to compromise antioxidant defense mechanisms.  相似文献   

2.
The brain is highly susceptible to oxidative stress due to its high metabolic demand. Increased oxidative stress and depletion of glutathione (GSH) are observed with aging and many neurological diseases. Exercise training has the potential to reduce oxidative stress in the brain. In this study, nine healthy sedentary males (aged 25?±?4 years) undertook a bout of continuous moderate intensity exercise and a high-intensity interval (HII) exercise bout on separate days. GSH concentration in the anterior cingulate was assessed by magnetic resonance spectroscopy (MRS) in four participants, before and after exercise. This was a pilot study to evaluate the ability of the MRS method to detect exercise-induced changes in brain GSH in humans for the first time. MRS is a non-invasive method based on nuclear magnetic resonance, which enables the quantification of metabolites, such as GSH, in the human brain in vivo. To add context to brain GSH data, other markers of oxidative stress were also assessed in the periphery (in blood) at three time points [pre-, immediately post-, and post (~1?hour)-exercise]. Moderate exercise caused a significant decrease in brain GSH from 2.12?±?0.64?mM/kg to 1.26?±?0.36?mM/kg (p?=?.04). Blood GSH levels increased immediately post-HII exercise, 580?±?101?µM to 692?±?102 µM (n?=?9, p?=?.006). The findings from this study show that brain GSH is altered in response to acute moderate exercise, suggesting that exercise may stimulate an adaptive response in the brain. Due to the challenges in MRS methodology, this pilot study should be followed up with a larger exercise intervention trial.  相似文献   

3.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

4.
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.  相似文献   

5.
Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.  相似文献   

6.
Objective: The aim of this study was to determine the implication of xanthine oxidase (XO) in the exercise-induced muscle oxidative stress and muscle dysfunction of these patients.

Methods: A randomized, crossover and double-blind study was conducted in nine severe COPD patients, who performed a localized quadriceps endurance test after oral treatment with allopurinol, a XO inhibitor or placebo. Redox status was studied in arterial and venous femoral blood before and after the endurance test.

Results: In placebo condition, muscle exercise resulted in a significant increase in AOPP and isoprostanes, with a significant increase in the venoarterial difference (v-a) in isoprostanes after exercise as compared with before (p<0.05). In contrast, allopurinol treatment prevented the elevation in AOPP levels and v-a isoprostanes after exercise. However, no significant improvement in quadriceps muscle endurance was observed, but allopurinol treatment seemed to preserve muscle strength properties.

Conclusion: This study demonstrates that XO is implicated in the exercise-induced muscle oxidative stress of COPD patients. Allopurinol administration seemed to improve only some muscle properties. Therefore other sources of muscle oxidative stress should be implicated in muscle dysfunction observed in these patients.  相似文献   

7.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), as a measure of oxidative stress, was measured before and after 12 weeks of progressive resistance strength training in 8 healthy elderly (65–80 yr) and eight healthy young (22–30 yr) men and women, and in eight adults (25–65 yr) with rheumatoid arthritis (RA).Training subjects exercised at 80% of their one-repetition maximum and performed eight repetitions per set, three sets per session, on a twice-weekly basis. 8-OHdG was measured at baseline and follow-up (at least 24 hr after the last exercise session) in the RA and elderly subject groups, and at baseline only in young subjects.Baseline 8-OHdG levels were greater among subjects with RA compared to both healthy young (P < 0.001) and elderly (P < 0.05) subjects. There were no changes in 8-OHdG levels in either RA or elderly subjects as a result of the strength training intervention.These results suggest that subjects with RA have higher levels of oxidative stress than young and elderly healthy individuals. Furthermore, there is no change in oxidative stress, measured by urinary 8-OHdG, in elderly healthy individuals or in subjects with RA after a 12-week strength training intervention.  相似文献   

8.
An important methodological threat when selecting individuals based on initial values for a given trait is the “regression to the mean” artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n?=?12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.  相似文献   

9.
Physical exercise can induce oxidative damage in humans. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is a widely known biomarker of DNA oxidation, which can be determined in blood and urine. The aim of the present study was to compare these two biological fluids in terms of which is more suitable for the estimation of the oxidative damage of DNA by measuring the concentration of 8-OHdG one hour after maximal exercise by enzyme immunoassay. The concentration of 8-OHdG increased with exercise only in plasma (p?<?0.001), and values differed between exercise tests in both plasma and urine (p?<?0.05). In conclusion, plasma appears to be more sensitive to exercise-induced 8-OHdG changes than urine and, hence, a more appropriate medium for assessing oxidative damage of DNA, although the poor repeatability of the measurement needs to be addressed in future studies  相似文献   

10.
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.  相似文献   

11.
The effects of endurance training on lactate transport capacity remain controversial. This study examined whether endurance training 1) alters lactate transport capacity, 2) can protect against exhaustive exercise-induced lactate transport alteration, and 3) can modify heart and oxidative muscle monocarboxylate transporter 1 (MCT1) content. Forty male Wistar rats were divided into control (C), trained (T), exhaustively exercised (E), and trained and exercised (TE) groups. Rats in the T and TE groups ran on a treadmill (1 h/day, 5 days/wk at 25 m/min, 10% incline) for 5 wk; C and E were familiarized with the exercise task for 5 min/day. Before being killed, E and TE rats underwent exhaustive exercise (25 m/min, 10% grade), which lasted 80 and 204 min, respectively (P < 0.05). Although lactate transport measurements (zero-trans) did not differ between groups C and T, both E and TE groups presented an apparent loss of protein saturation properties. In the trained groups, MCT1 content increased in soleus (+28% for T and +26% for TE; P < 0.05) and heart muscle (+36% for T and +33% for TE; P < 0.05). Moreover, despite the metabolic adaptations typically observed after endurance training, we also noted increased lipid peroxidation byproducts after exhaustive exercise. We concluded that 1) endurance training does not alter lactate transport capacity, 2) exhaustive exercise-induced lactate transport alteration is not prevented by training despite increased MCT1 content, and 3) exercise-induced oxidative stress may enhance the passive diffusion responsible for the apparent loss of saturation properties, possibly masking lactate transport regulation.  相似文献   

12.
This study evaluated the effect of red mold rice supplementation on antifatigue and exercise-related changes in lipid peroxidation of male adult Wistar rats through swimming exercise. Thirty 16-week-old rats were studied by dividing them into three groups (ten for each group). Other than the control group (CD), the other two groups were divided into a high-dose (HD) treatment group (5 g red mold rice/kg body weight for the HD group), and a low-dose (LD) group (1 g red mold rice/kg body weight for the LD group). Swimming endurance tests were conducted after 28 days of red mold rice supplementation, and the result showed that the treatment group showed a higher exercise time (CD, 78.0±6.4; LD, 104.2±9.6; and HD, 129.4±10.9 min; p<0.05) and a higher blood glucose concentration (CD, 76.67±8.08; LD, 111.34±8.50; and HD, 117.67±11.06 mg/dl; p<0.05) than the CD. Moreover, the blood lactate (CD, 45.00±0.90; LD, 31.41±1.80; and HD, 28.89±1.62 mg/dl; p<0.05), blood urea nitrogen (CD, 21.87±0.75; LD, 20.33±0.83; and HD, 20.53±1.09 mg/dl; p<0.05), and hemoglobin (CD, 14.20±0.21; LD, 13.70±0.55; and HD, 13.28±0.35 g/dl; p<0.05) were also significantly lower than those of the CD. Besides, the result suggested that the red mold rice supplementation may decrease the contribution of exercise-induced oxidative stress and improve the physiological condition of the rats.  相似文献   

13.
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS.  相似文献   

14.
Exercise training improves functional capacity in aged individuals. Whether such training reduces the severity of exercise-induced muscle damage is unknown. The purpose of the present study was to determine the effect of 10 wk of treadmill exercise training on skeletal muscle oxidative capacity and exercise-induced ultrastructural damage in six aged female Quarter horses (>23 yr of age). The magnitude of ultrastructural muscle damage induced by an incremental exercise test before and after training was determined by electron microscopic examination of samples of triceps, semimembranosus, and masseter (control) muscles. Maximal aerobic capacity increased 22% after 10 wk of exercise training. The percentage of type IIa myosin heavy chain increased in semimembranosus muscle, whereas the percentage of type IIx myosin heavy chain decreased in triceps muscle. After training, triceps muscle showed significant increases in activities of both citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase. Attenuation of exercise-induced ultrastructural muscle damage occurred in the semimembranosus muscle at both the same absolute and the same relative workloads after the 10-wk conditioning period. We conclude that aged horses adapt readily to intense aerobic exercise training with improvements in endurance, whole body aerobic capacity, and muscle oxidative capacity, and heightened resistance to exercise-induced ultrastructural muscle cell damage. However, adaptations may be muscle-group specific.  相似文献   

15.
Objective: To determine whether interpersonal stress reduces youths’ motivation to exercise in a laboratory setting. Research Methods and Procedures: Physical activity and sedentary behavior were measured in boys and girls across a control day, after reading children's magazines, and on a stress day, after giving a videotaped speech. For one analysis, children were divided into low (n = 12) and high (n = 13) heart‐rate reactivity groups based on changes in heart rate to stress. In a second analysis, children were divided into low and high perceived level of stress based on changes in perceived stress. To determine differences in choice of exercise or sedentary behavior across the control and stress conditions, subjects chose either to exercise for progressively longer periods to earn a monetary reinforcer or to engage in a high‐rated sedentary behavior. Results: The choice to exercise was influenced by stress reactivity differently in the stress and control conditions. Low heart‐rate reactive children participated in similar (p > 0.50) amounts of exercise on the stress and control days, but high heart‐rate reactive children participated in less (p < 0.01) exercise (22.0 ± 2.5 vs. 26.3 ± 2.2 minutes) on the stress than control days. When grouped by change in perceived stress, there were no group differences, but subjects exercised longer (p < 0.01) on the control day than the stress day. Discussion: Interpersonal stress decreased exercise in children susceptible to interpersonal stress. Stress‐induced alterations in health behaviors may lead to weight gain in children.  相似文献   

16.
Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma protein carbonyl (PC) moieties are abundant, chemically stable, and easily detectable markers of oxidative stress that are widely used for the interpretation of exercise-induced changes in redox balance. Despite many studies reporting acute increases in plasma PC concentration in response to exercise, some studies, including those from our own laboratory have shown decreases. This review will discuss the differences between studies reporting increases, decreases, and no change in plasma PC concentration following exercise in humans; highlighting participant physiology (i.e. training status) and study design (i.e. intensity, duration, and novelty of the exercise bout) as the main factors driving the direction of the PC response to exercise. The role of the 20S proteasome system is proposed as a possible mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-induced differences in plasma protein composition and balance between tissues are also discussed. We suggest that exercise may stimulate the clearance of plasma PC present at baseline, whereas simultaneously increasing reactive oxygen species production that facilitates the formation of new PC groups. The balance between these two processes likely explains why some studies have reported no change or even decreases in plasma PC level post-exercise when other biomarkers of oxidative stress (e.g. markers of lipid peroxidation) were elevated. Future studies should determine factors that influence the balance between PC clearance and formation following acute exercise.  相似文献   

17.
《Luminescence》2003,18(5):278-282
Intensive exercise training decreases neutrophil functions in athletes. However, no studies to date have investigated the effect of irregular‐interval training, such as is associated with judo training programmes, on neutrophil functions. The purpose of this study was to examine such effects. Thirty‐seven male college judoists participated in this study. Neutrophil oxidative burst activity, phagocytic activity and expression of CD11b and CD16 per cell were measured by ?ow cytometry before and after judo training. Total neutrophil counts increased signi?cantly from 2.98 ± 0.82 to 7.95 ± 1.80 × 103/µL (p < 0.001). The proportion of neutrophils producing reactive oxygen species (ROS) was increased signi?cantly (p < 0.001). On the other hand, the phagocytic activity decreased after training, as shown by a decrease in the amount of ingested opsonized zymosan per cell (p < 0.001), possibly as a compensatory effect for the increased numbers of ROS‐producing neutrophils. Expression of CD11b and CD16 per cell decreased by 20% and 30%, respectively, after judo training. In conclusion, judo training induced a decrease in phagocytic activity through the lowered expression of CD11b and CD16 on the surface of neutrophils, and increased the oxidative burst activity of neutrophils. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Objectives: Determine the effects of a 12-month exercise and lifestyle intervention program on changes in plasma biomarkers of oxidative stress in pre-dialysis chronic kidney disease (CKD) patients.

Methods: A total of 136 stage 3–4 CKD patients were randomized to receive standard nephrological care with (N?=?72) or without (N?=?64) a lifestyle and exercise intervention for 12 months. Plasma total F2-isoprostanes (IsoP), glutathione peroxidase (GPX) activity, total antioxidant capacity (TAC), anthropometric and biochemical data were collected at baseline and at 12 months.

Results: There were no significant differences between groups at baseline. There were no significant differences in changes for standard care and lifestyle intervention, respectively, in IsoP (p?=?0.88), GPX (p?=?0.87), or TAC (p?=?0.56). Patients identified as having high IsoP at baseline (>250 pg/mL) had a greater decrease in IsoP with lifestyle intervention compared to standard care; however, the difference was not statistically significant (p?=?0.06). There was no difference in the change in kidney function (eGFR) between standard care and lifestyle intervention (p?=?0.33).

Discussion: Exercise and lifestyle modification in stage 3–4 CKD did not produce changes in systemic biomarkers of oxidative stress over a 12-month period, but patients with high IsoP may benefit most from the addition of intervention to standard care.  相似文献   

19.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   

20.
Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号