首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We synthesized several esters of R(?)-N-alkyl-11-hydroxy-2-methoxynoraporphines, assessed their affinities at dopamine D1 and D2 receptors in rat forebrain tissue and quantified their effects on motor activity in normal adult male rats. Tested compounds displayed moderate to high affinities to D2 receptors but low affinities to D1 receptors. The most D2-potent (Ki = 18.9 nM) and selective novel agent (>529-fold vs D1 sites) was R(?)-2-methoxy-11-acetyloxy-N-n-propylnoraporphine (compound 4b). At moderate doses, the compound proved to have prolonged behavioral locomotor activity.  相似文献   

2.
The diverse biological activities of ??-hydroxyalkenal phospholipids and their involvement in disease are the subject of intense study. Phospholipid aldehydes, such as the 4-hydroxy-7-oxohept-5-enoic acid ester of 2-lyso-phosphatidylcholine (HOHA-PC), the 5-hydroxy-8-oxo-6-octenoic acid ester of 2-lyso-PC (HOOA-PC), and the 9-hydroxy-12-oxododec-10-enoic acid ester of 2-lyso-PC (HODA-PC), are generated by oxidative cleavage of polyunsaturated fatty acyl phospholipids. To facilitate investigations of their chemistry and biology, we now report efficient total synthesis of HOOA, HODA, and HOHA phospholipids. Because the target ??-hydroxyalkenals readily decompose through oxidation of the aldehyde group to a carboxylic acid or through cyclization to furans, these synthesis generate the sensitive functional array of the target phospholipids under mild conditions from acetal derivatives that are suitable for long-term storage.  相似文献   

3.
4.
Parkinson's disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of α-synuclein (α-syn). The normal function of α-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. α-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both α-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of α-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified α-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified α-syn also induced cytotoxic effects on differentiated SHSY-5Y cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-α-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD.  相似文献   

5.
Oxidative stress is associated with many disease states including gynecologic disease. This process can damage lipids, proteins and DNA. The present study highlights the role of oxidative stress induced DNA damage as measured by 8-hydroxy-2-deoxyguanosine in development of benign gynecological conditions (BGC). Our aim was to map the oxidative DNA damage on female reproductive organs and highlight the high amount found in a variety of benign gynecologic disorders. Seventeen biopsy specimens from female pelvic organs were divided in two groups: healthy organs tissue and BGC tissue. Healthy organs biopsy tissue included the cervix, tubes, uterus, peritoneum, and topic endometrium in secretory phase. Benign gynecological biopsy tissue included hydrosalpinges, leiomyoma, adenomyosis and tubal cysts. Immunohistochemical staining showed significantly higher levels of DNA damage between BGC and healthy organs [19.36 % (6.20; 32.51) vs. 4.61 % (0.63; 8.53); P < 0.0344]. Our results highlight the involvement of oxidative stress DNA damage in female benign pelvic disease. Hydrosalpinges, leiomyoma, and adenomyosis exhibit the highest amounts of oxidative DNA damage in the pelvic cavity.  相似文献   

6.
Oxidation of DNA due to exposure to reactive oxygen species is a major source of DNA damage. One of the oxidation lesions formed, 5-hydroxy-2'-deoxycytidine, has been shown to miscode by some replicative DNA polymerases but not by error prone polymerases capable of translesion synthesis. The 5-hydroxy-2'-deoxycytidine lesion is repaired by DNA glycosylases that require the 5-hydroxycytidine base to be extrahelical so it can enter into the enzyme's active site where it is excised off the DNA backbone to afford an abasic site. The thermodynamic and nuclear magnetic resonance results presented here describe the effect of a 5-hydroxy-2'-deoxycytidine·2'-deoxyguanosine base pair on the stability of two different DNA duplexes. The results demonstrate that the lesion is highly destabilizing and that the energy barrier for the unstacking of 5-hydroxy-2'-deoxycytidine from the DNA duplex may be low. This could provide a thermodynamic mode of adduct identification by DNA glycosylases that requires the lesion to be extrahelical.  相似文献   

7.
The β-carbon of the acyl group of β-hydroxy-β-methylglutarylhydroxyabscisic acid was shown to possess R-configuration by HPLC analysis of the reduced product.  相似文献   

8.
Controlled alkaline hydrolysis of 16α-bromo-17-keto steroids 1, 5 and 7 with potassium carbonate and tetra-n-butylammonium hydroxide (n-Bu4NOH) and synthesis of 2α-hydroxy-3-ones 11, 13 and 16 by the controlled hydrolysis of the corresponding 2α-bromo-3-ones 9, 12 and 15 are described. Treatm carbonate in aqueous acetone or with n-Bu4NOH in aqueous dimethylformamide (DMF) gave 16α-hydroxy-17-ones 3, 6 and 8 in 85–90% yield, respectively. 2α-Hydroxy-3-ones 11, 13 and 16 were obtained by hydrolysis of the corresponding bromoketones 9, 12 and 15 in high yields using the above conditions or sodium hydroxide in pyridine or DMF, respectively. Deuterium labeling experiments suggested that equilibration between the 2α-bromoketone 9 and the 2β-bromo isomer 10 precedes the formation of the ketol 11 in which the true intermediate might be the 2β-isomer 10. However, rearranged androstane derivatives, 3β-hydroxy-2-ones 18 and 20, were stereoselectively obtained by treatment of the bromoketones 12 and 15 with an excess amount of sodium hydroxide.  相似文献   

9.
An acidic metabolite, 2α-carboxy-5α-androstane-3α, 16α, 17αtriol and two neutral metabolites, 2α-hydroxymethyl-5α-androstane-3α, 17α-diol, and 2α-hydroxymethyl-5α-androstane-3α, 16α, 17α-triol have been identified in the urine of rabbits orally dosed with 17β-hydroxy-2-hydroxymethylene-5α-androstan-3-one. 2α-Hydroxymethyl-5α-androstane-3α, 16α, 17α-triol was previously obtained from the urine of rabbits dosed with 17β-hydroxy-2α-methyl-5α-androstan-3-one. The acidic metabolite was the major urinary excretion product.  相似文献   

10.
11.
A new electrochemical glycosylation method is presented. According to the method cholesterol and other 3β-hydroxy-Δ5-steroids can be selectively transformed to glycosides using non-activated sugars. The method is also useful for the synthesis of glycoconjugates with sugar linked to a steroid moiety by an ether bond.  相似文献   

12.
Abstract

The biotransformation of four 3β-hydroxy-5-en-steroids with varying substituents at C-16 or/and C-17 by Mucor silvaticus was investigated. The characterization of the metabolites was performed by IR, MS, 1H NMR, 13C NMR, and 2-D NMR. All the examined substrates were transformed, mainly by 7α-hydroxylation. Studies carried out with M. silvaticus demonstrated the versatility of this organism in introducing hydroxyl groups at the 7α-, 9α-, 11α-, and 14α-positions in 3-ol-5-ene steroids. The relationships between the substrate structures and hydroxylated positions are also discussed.  相似文献   

13.
Several marine-derived fungi were evaluated by the bioreduction of 2-azido-1-phenylethanone 1, and the strains A. sydowii CBMAI 935 and M. racemosus CBMAI 847 were selected for the reduction of 2-azido-1-phenylethanone derivatives 2–4. Whole cells of A. sydowii CBMAI 935 promoted the reduction of 2-azido-1-phenylethanones 1–4 with high selectivities to yield the (S)-2-azido-1-phenylethanols 1a–4a. Bioreduction of compounds 1–4 by M. racemosus CBMAI 847 led to (R)-2-azido-1-phenylethanols for 1, 2 and 4 and (S)-2-azido-1-phenylethanol 3. Enantiomerically enriched 2-azido-1-phenylethanols 1a–4a and phenylacetylene 5 were applied in the synthesis of β-hydroxy-1,2,3-triazoles using CuSO4 and sodium ascorbate leading to regioselective formation of enantioenriched 1,4-disubstituted 1,2,3-triazole compounds 1b–4b.  相似文献   

14.
The neutral urinary excretion products of 17β-hydroxy-2α,3α-cyclopropano-5α-androstane from the rabbit, dosed orally, were investigated. Column chromatography yielded five crystalline metabolites which were identified by GLC and spectroscopic measurements. Three of these substances were hydroxylated in the 4α-position and one in the 6a-position with the cyclopropane ring intact. The fifth substance, 17β-hydroxy-3β-methyl-5α-androstan-2-one, can be derived from initial hydroxylation of the cyclopropane ring at C-2 followed by ring opening. The dosed substance and triol material was shown to be present by GLC and m.s. measurements. GLC determinations show that hydroxylation has occurred at C-4?C-6>C-2.  相似文献   

15.
S.J. Stohs 《Phytochemistry》1975,14(11):2419-2422
Leaf homogenates of Cheiranthus cheiri, Nerium oleander, Strophanthus kombé, Digitalis purpurea, and Corchorus capsularis were ex  相似文献   

16.
The incubation of bovine mitochondrial F1-ATPase with 2-hydroxy-5-nitrobenzyl bromide (HNB), a selective reagent toward tryptophan residues in proteins, produced a concentration dependent inactivation of the enzyme and the covalent binding of 0.88 mol reagent/mol F1. Although HNB is highly specific for tryptophan it has also some reactivity toward cysteine, then a pre-treatment of F1 with several sulphydryl reagents has been performed to make the site of reaction clearer. This pre-treatment had neither effects in the binding stoichiometry nor in the extent of catalytic inhibition, suggesting that readly accessible thiol groups are not involved in the reaction with HNB. Since the only tryptophan bearing polypeptide of the bovine mitochondrial F1-ATPase complex is its smallest subunit, subunit-epsilon, this is the most probable candidate for HNB reaction. Therefore it may be inferred that the intactness and/or the correct conformation of this subunit could be important factor(s) for the multisite ATP hydrolytic activity of the enzyme.  相似文献   

17.
The moss Rhynchostegium pallidifolium (Mitt.) A. Jaeger, which often forms large pure colonies on soils and rocks, inhibited the hypocotyls and root growth of cress (Lepidium sativum L.) seedlings when R. pallidifolium and cress were incubated together on agar medium. The inhibition of cress was greater at the close position from the moss than at the far position from the moss. 3-Hydroxy-β-ionone was found in the medium and concentration of 3-hydroxy-β-ionone in the medium was greater at the close position than at the far position from R. pallidifolium, suggesting that R. pallidifolium may secrete 3-hydroxy-β-ionone into the medium. Exogenously applied 3-hydroxy-β-ionone inhibited the growth of hypocotyls and roots of cress at concentrations greater than 1 and 3 µM, respectively. Considering the growth inhibitory activity and concentrations found in the medium, 3-hydroxy-β-ionone was estimated to be able to cause 46–64% of the observed growth inhibition of cress hypocotyls and roots by R. pallidifolium. Therefore, 3-hydroxy-β-ionone may play an important role in the allelopathic activity of R. pallidifolium and may help competition with neighboring plants resulting in the formation of pure colonies.Key words: allelopathy, growth inhibitor, 3-hydroxy-β-ionone, phytotoxicity, Rhynchostegium pallidifoliumBryophytes are almost free from attack by micro-organism and insects, and their herbarium specimens usually do not need special treatment against insects and micro-organism. In addition, many bryophyte species have their own particular odors and tastes.1 These bryophyte characteristics are probably attributed to chemical constituents inherent in their structures. In fact, many biologically active substances, such as phenolics and terpenoides, have been isolated from bryophytes.25Several higher plants can not grow well in places where some bryophytes occurred. Some bryophytes dominate plant communities and form large pure colonies on soils and rocks on sunny places of lowland to upland areas including marshy places.1,6,7 Therefore, allelopathic chemical interactions may play an important role in the domination of bryophytes in these plant communities. In contrast to higher plants, however, there only was a preliminary study on allelopathy of bryophytes. The moss Rhynchostegium pallidifolium (Mitt.) A. Jaeger, which belongs to Brachytheciaceae family of Bryopsida (moss) class, Bryophyta division, also forms large pure colonies and possesses strong allelopathic activity. An allelopathic substance of the moss was recently isolated and identified as 3-hydroxy-β-ionone.8  相似文献   

18.
4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate-cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modulatory (GCLM) subunit. The relative levels of the GCL subunits are a major determinant of cellular GSH biosynthetic capacity and 4-HNE induces the expression of both GCL subunits. In this study, we demonstrate that 4-HNE can alter GCL holoenzyme formation and activity via direct posttranslational modification of the GCL subunits in vitro. 4-HNE directly modified Cys553 of GCLC and Cys35 of GCLM in vitro, which significantly increased monomeric GCLC enzymatic activity, but reduced GCL holoenzyme activity and formation of the GCL holoenzyme complex. In silico molecular modeling studies also indicate these residues are likely to be functionally relevant. Within a cellular context, this novel posttranslational regulation of GCL activity could significantly affect cellular GSH homeostasis and GSH-dependent detoxification during periods of oxidative stress.  相似文献   

19.
Oxidative stress is related to a number of diseases due to the formation of reactive oxygen species (ROS). There are also several substances found in the occupational environment or as life style related situations that generates ROS. A stable biomarker for oxidative stress on DNA is 8-hydroxy-2′-deoxyguanosine (8-OH-dG).

A potential problem in the work-up and analysis of 8-OH-dG is oxidation of dG with false high levels as a result of analysis. This paper summarizes and discusses some of the critical moments in terms of auto-oxidation. The removal of transition metals, low temperatures, absence of isotopes (or 2′-deoxyguanosine) and incubation times are all important factors. Removal of oxygen is complicated while the problem is reduced if a nitroxide (TEMPO) is added during work-up. Certain reducing agents and enzymes could be critical if added during work-up.

The application of the 32P-HPLC method to analyze 8-OH-dG is discussed. The 32P-HPLC method is suitable for 8-OH-dG analysis and avoids several factors that oxidizes dG by removal of dG before addition of isotopes. Factors of crucial importance (columns, eluents, gradients and detection of 32P) for the analysis of 8-OH-dG are commented upon and certain recommendations are made to make it possible to apply the 32P-HPLC methodology for this type of analysis.  相似文献   

20.
The mechanism of the effect of β-hydroxy-β-methylbutyrate (HMB) on protein degradation induced by lipopolysaccharide (LPS) has been evaluated in murine myotubes. HMB (50 μM) completely attenuated total protein degradation induced by LPS (1–100 ng/ml), formation of reactive oxygen species (ROS) and activation of caspase-3/-8. Specific inhibitors of caspase-3/-8 completely attenuated ROS production, total protein degradation and the LPS-induced autophosphorylation of dsRNA-dependent protein kinase (PKR). Protein degradation in response to LPS or ROS production was not seen in myotubes transfected with mutant PKRΔ6, suggesting that PKR was involved in ROS production, which was essential for total protein degradation. This was confirmed using the antioxidant butylated hydroxytoluene (BHT) which completely attenuated protein degradation in response to LPS. The link between PKR activation and ROS production was mediated through p38 mitogen-activated protein kinase (MAPK), which was activated by LPS in myotubes transfected with wild-type PKR, but not PKRΔ6. Both ROS production and protein degradation induced by LPS were completely attenuated by SB203580, a specific inhibitor of p38MAPK. This suggests that LPS induces protein degradation through a signalling cascade involving activation of caspase-3/-8, activation of PKR and production of ROS through p38MAPK, and that this process is attenuated by HMB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号