首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Enhanced leaf chlorophyll levels in plants treated with seaweed extract   总被引:3,自引:0,他引:3  
Application to the soil of an aqueous alkaline extract ofAscophyllum nodosum resulted in higher concentrations of chlorophyll in the leaves of treated plants in comparison to control plants treated with an equivalent volume of water. Positive results were obtained with all species tested (tomato, dwarf French bean, wheat, barley, maize). When the seaweed extract was applied as a foliar spray, similar effects on leaf chlorophyll contents were obtained, except in the case of dwarf French bean plants, for which no significant difference was recorded between test and control plants. When the betaines present in the seaweed extract were applied as a mixture in the same concentrations as those in the diluted seaweed extract (-aminobutyric acid betaine 0.96 mg L–1, -aminovaleric acid betaine 0.43 mg L–1, glycinebetaine 0.34 mg L–1), very similar leaf chlorophyll levels were recorded for the seaweed extract and betaine treated plants. This suggests strongly that the enhanced leaf chlorophyll content of plants treated with seaweed extract is dependent on the betaines present.  相似文献   

2.
Beneficial effects of seaweeds and their extracts on crop performance have been attributed to a variety of compounds, including the betaines which are quaternary ammonium betaines. Methods of analysis of betaines published thus far suffer from low sensitivity, lack of baseline separation of individual betaines and from interference from other sample constituents. A rapid cleanup protocol and a sensitive LC-MS/MS method of analysis were developed to afford baseline separation of four betaines in the brown alga Ascophyllum nodosum and its commercial seaweed extract. Using this method, the presence of glycine betaine, δ-aminovaleric acid betaine, γ-aminobutyric acid betaine and laminine in A. nodosum, and commercial extracts derived from A. nodosum, were confirmed and quantified. The major betaine present was γ-aminobutyric acid betaine accounting for 0.008–0.014% of the dry weight of the seaweed and 0.014–0.027% of the dry weight of the commercial extracts. Seasonal variation in betaine content was observed. Differences in the total betaine content were observed between A. nodosum of the yellow (0.011–0.017% dry weight) and the olive green (0.017–0.021% dry weight) coloured morphologies.  相似文献   

3.
Treatment of Arabidopsis thaliana plants with a commercially-available, alkaline extract of the marine brown alga, Ascophyllum nodosum, resulted in a significant decrease in the number of females of the root-knot nematode, Meloidogyne javanica, which developed in the roots compared to those of plants grown in a water control medium. Significant reductions in egg recovery were also achieved from plants treated with the seaweed extract. Similar effects were produced when betaine components of the seaweed extract (γ-aminobutyric acid betaine, δ-aminovaleric acid betaine and glycinebetaine) were used in quantities equivalent to those applied in the seaweed extract treatment. As the experiments were conducted under monoxenic conditions, it can be concluded that the results obtained with the application of either the seaweed extract or betaines are indicative of their effects on the plants and are not dependent on microorganisms associated with the rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An off-line, overpressured layer chromatographic procedure has been developed for the evaluation of betaines in commercial seaweed extracts using Dragendorff's reagent for the detection of the compounds and densitometry for their quantitative estimation. Using continuous development and a low sample volume, the amounts of -aminobutyric acid betaine and -aminovaleric acid betaine can be estimated, but a larger sample volume is necessary for the estimation of glycinebetaine and minor betaines.The critical steps of this analytical method are the visualization and the quantitative evaluation of the spots produced. Temperature plays a major role in the resolution, sensitivity and precision after derivatization with Dragendorff's reagent; this has led to the adoption of standardized conditions.Author for correspondence  相似文献   

5.
Whereas the inhibitory innervation of the deep extensor abdominal muscle in crayfish is mediated by a weakly acting common inhibitor, the opener muscle exhibits a stronger inhibition. In the present study the most abundant γ-aminobutyric acid-activated chloride channel on distal fibers of crayfish opener muscle was characterized by measuring the current responses after applying pulses of γ-aminobutyric acid to outside-out patches. The results were compared to those obtained earlier with the chloride channel on the deep extensor abdominal muscle of the same species. The double logarithmic plot of the dose-response relationship had a slope of n H = 2.2 in contrast to n H = 5.3 for the channel on the deep extensor abdominal muscle. The rise time of the current response declined to 1 ms at a γ-aminobutyric acid concentration of 50 mmol · l−1. With lower concentrations the rise time increased to a maximal value of 280 ms. No peak of the rise time at low γ-aminobutyric acid concentrations, as observed for the channel on the deep extensor abdominal muscle, was obvious. The open and closed times were similar to those of the channel of the deep extensor abdominal muscle. Different reaction schemes were discussed to describe the kinetics of the chloride channel of the opener muscle. Accepted: 12 August 1996  相似文献   

6.
A protocol was developed for rapid and efficient production of transgenic celery plants via somatic embryo regeneration from Agrobacterium tumefaciens- inoculated leaf sections, cotyledons and hypocotyls. These explants were excised from in vitro seedlings of the cvs. XP166 and XP85 and inoculated with A. tumefaciens strain EHA105 containing the binary vector pBISN1. PBISN1 has the neomycin phosphotransferase gene (nptII) and an intron interrupted β-glucuronidase (GUS) reporter gene (gusA). Co-cultivation was carried out for 4 d in the dark on callus induction medium (CIM): Gamborg B5 + 2.79 μM kinetin + 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented with 100 μM acetosyringone. Embryogenic calluses resistant to kanamycin (Km) were then recovered on CIM + 25 mg l−1 Km + 250 mg l−1 timentin after 12 weeks. Subsequently, a large number of Km-resistant and GUS-positive transformants, tens to hundreds per explant were regenerated via somatic embryogenesis on Gamborg B5 + 4.92 μM 6 (γ,γ-dimethylallylamino)-purine (2iP) + 1.93 μM α-naphthaleneacetic acid (NAA) + 25 mg l−1 Km + 250 mg l−1 timentin after 8 weeks. Using this protocol, the transformation frequency was 5.0% and 5.0% for leaf sections, 17.8% and 18.3% for cotyledons, and 15.9% and 16.7% for hypocotyl explants of cvs. XP85 and XP166, respectively. Stable integration of the model transgenes with 1–3 copy numbers was confirmed in all ten randomly selected transgenic events by Southern blot analysis of gusA. Progeny analysis by histochemical GUS assay showed stable Mendelian inheritance of the transgenes. Thus, A. tumefaciens-mediated transformation of cotyledons or hypocotyls provides an effective and reproducible protocol for large-scale production of transgenic celery plants.  相似文献   

7.
In previous studies, we showed that lacrimal gland acini express three isoforms of protein kinase C (PKC): PKCα,-δ, and -ε. In the present study, we report the identification of two other PKC isoforms, namely PKCμ and -ι/λ. Using immunofluorescence techniques, we showed that these isoforms are differentially located. PKCα and -μ showed the most prominent membrane localization, whereas PKCδ, -ε and -ι/λ were mainly cytosolic. Using cell fractionation and western blotting techniques, we showed that the phorbol ester, phorbol 12, 13-dibutyrate (PdBu, 10−6 m), translocated all PKC isoforms, except PKCι/λ, from the soluble fraction into the particulate fraction. The effect was maximum at 5 min and persisted at 10 min. PKCε was the most responsive to PdBu reaching almost maximal translocation at a PdBu concentration as low as 10−9 m. The cholinergic agonist, carbachol (10−5 and 10−3 m), induced translocation which was transient for PKCδ, and -μ, but persisted for 10 min for PKCε. Carbachol did not translocate PKCα and, like PdBu, did not translocate PKCι/λ. We concluded that lacrimal gland PKC isoforms are differentially localized and that they translocate differentially in response to phorbol esters and cholinergic agonists. Received: 25 June 1996/Revised: 24 December 1996  相似文献   

8.
The inhibitory motoneurons of crustaceans form synapses both with the sarcolemma of muscle fibres and with the very distal branchings of the excitatory motoneurons. The transmitter of these synapses is GABA (γ-aminobutyric acid) which is known to open Cl channels. Studies on the dactyl opener muscle of crayfish suggest that application of GABA not only leads to an increase in the Cl permeability but also to a considerable HCO 3 conductance that causes an intracellular acidification. To investigate possible physiological implications, we measured the intracellular pH of various muscle fibre types of crayfish and crab using pH-sensitive microelectrodes. Independent of the presence or absence of inhibitory innervation, bath application of 10−5 mol l−1 GABA led to acidification in all fibre types (pH change: 0.14 ± 0.08, n=11). In no preparation was a change in intracellular pH observed upon stimulation of specific or common inhibitory motoneurons with 10–40 pulses s−1 for 2–5 min. The results suggest that HCO 3 conductance cannot be activated through synaptic GABA receptors. However, all crustacean muscle fibre types seem to possess extrasynaptic GABA-sensitive channels that exhibit a considerable HCO 3 conductance. The physiological importance of these channels remains to be elucidated. Accepted: 13 July 2000  相似文献   

9.
The mechanism of lead (Pb2+)-induced neurotoxicity has not yet been fully elucidated. The purpose of this study was to examine the effects of Pb2+ on several protein kinase C (PKC) isoforms and the nuclear factor-κB (NF-κB)–I-κB kinase-alpha (IKK-α) axis in cultured neuronal cells. Neurons were isolated from rat fetal brain at the 18th day of gestation of pregnant Sprague Dawley rats and cultured for 10 days before use. Neurons were exposed to Pb2+ at concentrations of 10−10, 10−9, 10−8, and 10−7 mol/L for 14 h and antigens of typical PKC-α,β,γ; novel PKC (ε, δ), atypical PKC (λ), NF-κB (p50), and IKK-α were enriched by immunoprecipitation and determined by western blotting. Total, calcium-dependent and independent PKC activities were also determined by counting the transferred γ-32 P in the substrate-histone. The results indicated that inorganic Pb2+ significantly reduced all PKC isoforms (α,β,γ, ε, λ) except δ, inhibiting the total, calcium-dependent and calcium-independent PKC activities in a dose-dependent manner. Additionally, Pb2+ gradually reduced NF-κB (p50) and IKK-α protein levels. This suggests that Pb2+ exhibits varying preference for individual PKC isoforms but reduces the NF-κB–IKK-α axis to a similar extent.  相似文献   

10.
11.
Reggiani R 《Amino acids》2006,30(3):299-301
Summary. Inhibitors of action and synthesis of ethylene (Ag+, norbornadien, Co2+) were able to reduce the level of γ-aminobutyric acid (Gaba) in rice roots during the development of an anaerobic environment. The inhibitory effect was reversed by the addition of the G protein activator 5′-guanylylimidodiphosphate. Gaba accumulation was modulated by the presence of CO2 (inhibitor of ethylene action and synthesis) and stimulated by 2-chloroethylphosphonic acid (ethefon). These findings are consistent with a role of ethylene during a low-oxygen stress.  相似文献   

12.
Chloride (Cl) conductances were studied in primary cultures of the bright part of rabbit distal convoluted tubule (DCTb) by the whole cell patch clamp technique. The bath solution (33°C) contained (in mm): 140 NaCl, 1 CaCl2, 10 N-2-hydroxy-ethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH 7.4 and the pipette solution 140 N-methyl-d-glucamine (NMDG)-Cl, 5 MgATP, 1 ethylene-glycol-bis(b-aminoethyl ether)-N,N,N,N′-tetraacetic acid (EGTA), 10 HEPES, pH 7.4. We identified a Cl current activated by 10−5 m forskolin, 10−3 m 8-bromo adenosine 3′,5′-cyclic monophophosphate (8 Br-cAMP), 10−6 m phorbol 12-myristate 13-acetate (PMA), 10−3 m intracellular adenosine 3′,5′-cyclic monophophosphate (cAMP) and 10−7 m calcitonin. The current-voltage relationship was linear and the relative ion selectivity was Br > Cl≫ I > glutamate. This current was inhibited by 10−3 m diphenylamine-2-carboxylate (DPC) and 10−4 m 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and was insensitive to 10−3 m 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). These characteristics are similar to those described for the cystic fibrosis transmembrane conductance regulator (CFTR) Cl conductance. In a few cases, forskolin and calcitonin induced an outwardly rectifying Cl current blocked by DIDS. To determine the exact location of the Cl conductance 6-methoxy-1-(3-sulfonatopropyl) quinolinium (SPQ) fluorescence experiments were carried out. Cultures seeded on collagen-coated permeable filters were loaded overnight with 5 mm SPQ and the emitted fluorescence analyzed by laser-scan cytometry. Cl removal from the apical solution induced a Cl efflux which was stimulated by 10−5 m forskolin, 10−7 calcitonin and inhibited by 10−5 m NPPB. In 140 mm NaBr, forskolin stimulated an apical Br influx through the Cl pathway. Forskolin and calcitonin had no effect on the basolateral Cl permeability. Thus in DCTb cultured cells, exposure to calcitonin activates a Cl conductance in the apical membrane through a cAMP-dependent mechanism. Received: 5 July 1995/Revised: 21 December 1995  相似文献   

13.
The extracts obtained from 28 species of marine algae were evaluated for their antioxidant activity (AA) versus the positive controls butylated hydroxytoluene (BHT), gallic acid (GA), and ascorbic acid (AscA). Most of the tested samples displayed antioxidant activity to various degrees. Among them, the extract of Symphyocladia latiuscula exhibited the strongest AA, which was comparable to BHT, GA, and AscA in radical scavenging activity, as shown in the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and higher than those of the positive controls in β-carotene-linoleate assay system. In addition, the ethyl acetate-soluble fraction isolated from the crude extract of S. latiuscula exhibited the highest antioxidant activity in both assay systems. This fraction was further fractionated into seven subfractions (F1-F7) by vacuum liquid chromatography (VLC). F1 and F4 were found to be the most effective subfractions in scavenging DPPH radical assay and in the β-carotene-linoleate assay, respectively. The total phenolic content (TPC) and reducing power (RP) for all of the extracts, fractions, and subfractions (F1–F7) were also determined. The TPC of the 28 extracts ranged from 0.10 to 8.00 gallic acid equivalents (mg/g seaweed dry weight) while the RP ranged from 0.07 to 11.60 ascorbic acid equivalents (mg·g−1 seaweed dry weight). Highly positive relationships between AA and TPC as well as between AA and RP were found for the extracts and fractions, while for the subfractions F1–F7 only weak or no such relations were found. The results obtained from this study indicate that further analysis is needed of those marine algal species that contain the most antioxidant activity in order to identify the active principles.  相似文献   

14.
Summary Callus induction and regeneration studies were carried out on a medicinal fern, Drynaria quercifolia native to Asian countries. It is a seasonal fern that regenerates only during the monsoons. Callus was induced on Knop’s (1865) medium supplemented with 20 gl−1 sucrose, 8gl−1 agar, and either 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-amino-3,5,6-trichloropicolinic acid (picloram), or indole-3-butyric acid at different concentrations. Morphogenetic callus obtained on 5 mgl−1 2,4,5-T was subcultured onto solid and liquid media (shaken flask and discontinuously stirred bioreactor cultures) for callus proliferation and regeneration studies. A significant amount of sporophyte regeneration was observed on solid medium containing 10 mgl−1 6-(δ, δ-dimethylallylamino) purine (2iP). Sporophyte regeneration from callus followed an atypical pattern of development. Leafy structures of single-cell thickness with a microrhizome were formed as sporophyte initials. Prolonged cultures of these structures resulted in the formation of juvenile sporophytes in vitro. The use of liquid media resulted in increased biomass in culture. The present study is the first report of a successful system for callus production and regeneration of sporophytes from leafy structures in ferns. The method can be successfully applied for generation of biomass of D. quercifolia, throughout the year.  相似文献   

15.
GABA-activated Cl current was expressed in Xenopus oocytes after injecting cRNA that had been transcribed in vitro from complementary DNA (cDNA) coding for a single GABA ρi-subunit cloned from human retina. The expressed current was insensitive to 100 μm bicuculline, but was activated by the GABA analogue trans-4-aminocrontonic acid (TACA). Anion-selective permeability of the expressed ρ1-subunit was determined by isotonically replacing the extracellular Cl with different anions. The anion permeability was very similar to the native GABAA receptor/channel following a sequence of SCN > I > NO3 > Br≥ Cl. Halogenated fatty acids, such as chlorotrifluoroethylene (CTFE) and perfluorinated oligomer acids inhibited the GABA-induced current in oocytes expressing the human retinal GABA ρ1-subunit or rat brain GABAA receptor α122 subunits. The inhibitory effect of halogenated fatty acids demonstrated a carbon chain length-dependent manner of: C10 > C8 > C6 > C4. Perfluorinated C8-oligomer acid (PFOA) was less effective at blocking this channel than the C8-CTFE oligomer acid. Radiolabeled GABA binding assay indicated that CTFE oligomer acids do not interfere at the GABA binding site of the receptor. Furthermore, the C8-CTFE oligomer fatty acid did not compete with picrotoxin for binding sites within the pore of the channel. These studies demonstrated that the heterologous expression system is useful for studying the molecular interaction between potential neurotoxic agents and neuroreceptors. Our results provide detailed information that should contribute to our understanding of the structure and function of retinal GABA receptors. Received: 12 June 1995/Revised: 21 September 1995  相似文献   

16.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

17.
On an industrial scale, the production of γ-aminobutyric acid (GABA) from the cheaper sodium L-glutamate (L-MSG) is a valuable process. By entrapping Lactobacillus brevis cells with higher glutamate decarboxylase (GAD) activity into Ca-alginate gel beads, the biotransformation conditions of L-MSG to GABA were optimized with the immobilized cells. The cells obtained from a 60-h culture broth showed the highest biotransformation efficiency from L-MSG to GABA. The optimal cell density in gel beads, reaction pH and temperature were 11.2 g dry cell weight (DCW) l−1, 4.4 and 40°C respectively. The thermal stability of immobilized cells was significantly higher than free cells. Under the optimized reaction conditions, the yield of GABA reached above 90% during the initial five batches and the yield still remained 56% in the tenth batch. Continuous production of GABA was realized with a higher yield by incorporating cell re-cultivation using the packed bed reactor.  相似文献   

18.
This work examined the effects of exogenously applied abscisic acid (ABA) on the content of chlorophyll, carotenoids, α-tocopherol, squalene, phytosterols, Δ9-tetrahydrocannabinol (THC) concentration, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) activity in Cannabis sativa L. at flowering stage. Treatment with 1 and 10 mg l−1 ABA significantly decreased the contents of chlorophyll, carotenoids, squalene, stigmasterol, sitosterol, and HMGR activity in female cannabis plants. ABA caused an increase in α-tocopherol content and DXS activity in leaves and THC concentration in leaves and flowers of female plants. Chlorophyll content decreased with 10 mg l−1 ABA in male plants. Treatment with 1 and 10 mg l−1 ABA showed a decrease in HMGR activity, squalene, stigmasterol, and sitosterol contents in leaves but an increase in THC content of leaves and flowers in male plants. The results suggest that ABA can induce biosynthesis of 2-methyl-d-erythritol-4-phosphate (MEP) pathway secondary metabolites accumulation (α-tocopherol and THC) and down regulated biosynthesis of terpenoid primary metabolites from MEP and mevalonate (MVA) pathways (chlorophyll, carotenoids, and phytosterols) in Cannabis sativa.  相似文献   

19.
The α1 subunit coding for the human brain type E calcium channel (Schneider et al., 1994) was expressed in Xenopus oocytes in the absence, and in combination with auxiliary α2δ and β subunits. α1E channels directed with the expression of Ba2+ whole-cell currents that completely inactivated after a 2-sec membrane pulse. Coexpression of α1E with α2bδ shifted the peak current by +10 mV but had no significant effect on whole-cell current inactivation. Coexpression of α1E with β2a shifted the peak current relationship by −10 mV, and strongly reduced Ba2+ current inactivation. This slower rate of inactivation explains that a sizable fraction (40 ± 10%, n= 8) of the Ba2+ current failed to inactivate completely after a 5-sec prepulse. Coinjection with both the cardiac/brain β2a and the neuronal α2bδ subunits increased by ≈10-fold whole-cell Ba2+ currents although coinjection with either β2a or α2bδ alone failed to significantly increase α1E peak currents. Coexpression with β2a and α2bδ yielded Ba2+ currents with inactivation kinetics similar to the β2a induced currents, indicating that the neuronal α2bδ subunit has little effect on α1E inactivation kinetics. The subunit specificity of the changes in current properties were analyzed for all four β subunit genes. The slower inactivation was unique to α1E2a currents. Coexpression with β1a, β1b, β3, and β4, yielded faster-inactivating Ba2+ currents than currents recorded from the α1E subunit alone. Furthermore, α1E2bδ/β1a; α1E2bδ/β1b; α1E2bδ/β3; α1E2bδ/β4 channels elicited whole-cell currents with steady-state inactivation curves shifted in the hyperpolarized direction. The β subunit-induced changes in the properties of α1E channel were comparable to modulation effects reported for α1C and α1A channels with β3≈β1b > β1a≈β4≫β2a inducing fastest to slowest rate of whole-cell inactivation. Received: 27 March 1997/Revised: 10 July 1997  相似文献   

20.
We employed chlorophyll a fluorometry in order to measure the evolution of turgor threshold (intracellular osmolality) during the adaptation of two genetic transformants of the freshwater cyanobacterium Synechococcus sp. PCC7942 to unfavorable external salinity: PAMCOD cells which oxidize imported choline and accumulate approx. 0.06–0.08 M glycine betaine; and PAM cells which do not oxidize choline [Deshnium et al. (1995a) Plant Mol Biol 29: 897–909]. Turgor thresholds increased linearly (a) with the NaCl concentration in the culture, and (b) with the molar sucrose/chlorophyll a ratio in the cell. PAMCOD cells could proliferate in culture medium containing 0.4 M NaCl (external osmolality, 0.815 Osm kg−1), after a lag period, during which intracellular sucrose rose to 10 mol (mol Chl a)−1, or more, and turgor threshold (cytoplasmic osmolality) exceeded 1 Osm kg−1. At comparative conditions, PAM cells accumulated approx. half as much sucrose, and attained approx. half as high turgor thresholds as the PAMCOD cells, but they did not proliferate. These results indicate that glycine betaine improved the salinity tolerance of the PAMCOD cells synergistically, by means of two effects that implicate sucrose, the main organic osmolyte of Synechocccus: enhancement of sucrose biosynthesis, and/or alleviation of sucrose toxicity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号