首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Earlier work had shown that the lactogen, LTH and HPL, foster testosterone binding by the prostate. This study was undertaken to see if prostaglandin F would oppose the effect of the lactogen on the prostate as it does the luteotrophic action of the hormone on the corpus luteum. When it was found instead that the PGF increases steroid binding and that its interaction with lactogen was neither antagonistic nor additive, attention was directed to further characterization of the prostaglandin's effect. A dosage/response study of F alone showed that concentrations of 4 ng/ml and 40 ng/ml increased binding but that 400 ng/ml did not. Glands with stromal hyperplasia and/or inflammation were more responsive than those with epithelial hyperplasia. Assays of water extracts of the tissue revealed concentrations of about 340 ng of F per gram fresh weight and that the concentration varied inversely as the β-glucuronidase activity. If the enzyme level is considered an index of the epithelial cell density within the specimen, the inverse relationship suggests a non-epithelial (stromal) site of prostaglandin concentration.  相似文献   

2.
The action of prostaglandin F2 alpha (PG F2 alpha) on incubated small bovine luteal cells in the presence or in the absence of bovine luteinizing hormone (LH) or dibutyryl cyclic adenosine monophosphate (db cAMP) was investigated. In the absence of LH and db cAMP, PG F2 alpha stimulated progesterone synthesis at concentrations of 10 ng/ml and 100 ng/ml but had no effects at concentrations below 1 ng/ml. PG F2 alpha partially inhibited the LH or db cAMP stimulated progesterone synthesis. This inhibition was maximal for PG F2 alpha concentrations around 100 pg/ml whereas distinctly higher or lower concentrations were without effect. At the concentration of 100 pg/ml, PG F2 alpha partially inhibited the LH induced cAMP accumulation. These results demonstrate an "in vitro" action of PG F2 alpha on bovine luteal cells. They indicate that the luteolytic action of PG F2 alpha in the bovine species could involve, as already suggested for the rat, both an inhibition of the LH induced synthesis of cAMP and an inhibition of the action of cAMP.  相似文献   

3.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   

4.
The distribution of prostaglandin E2 and F2 alpha was examined in the peripheral veins and in several positions of the cardiovascular system before and after the blood had passed through the lungs in 37 infants. Prostaglandin E2 varied from 0.25 +/- 0.09 ng/ml to 0.44 +/- 0.09 ng/ml when measured in the pulmonary artery, the ductus arteriosus, the right atrium, the right ventricle, the left atrium, the left ventricle, the inferior vena cava and the descending aorta. Prostaglandin F2 alpha was much higher in these positions of the cardiovascular system. The range was 0.99 +/- 0.36 ng/ml to greater than 2.0 ng/ml. The vascular tissues produced virtually identical high amounts of prostaglandin E2 and F2 alpha, but there were no significant differences in prostaglandin E2 and F2 alpha, concentrations, in venous blood as well as in systemic arterial blood. The results suggest that prostaglandin E2 is not responsible for the persisting patency of the ductus arteriosus in infants. There is no explanation for the increased prostaglandin F2 alpha concentrations in these patients.  相似文献   

5.
We studied the uterine venous plasma concentrations of prostaglandins E2, F2 alpha, 15 keto 13,14 dihydro E2 and 15 keto 13,14 dihydro F2 alpha in late pregnant dogs in order to evaluate the rates of production and metabolism of prostaglandin E2 and F2 alpha in pregnancy in vivo. We used a very specific and sensitive gas chromatography-mass spectrometry assay to measure these prostaglandins. The uterine venous concentrations of prostaglandin E2 and 15 keto 13,14 dihydro E2 were 1.35 +/- .27 ng/ml and 1.89 +/- .37 ng/ml, respectively; however, we could not find any prostaglandin F2 alpha and very little of its plasma metabolite in uterine venous plasma. Since uterine microsomes can generate prostaglandin F2 alpha and E2 from endoperoxides, prostaglandin F2 alpha production in vivo must be regulated through an enzymatic step after endoperoxide formation. Prostaglandin E2 is produced by pregnant canine uterus in quantities high enough to have a biological effect in late pregnancy; however, prostaglandin F2 alpha does not appear to play a role at this stage of pregnancy.  相似文献   

6.
Tumor necrosis factor-alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F2alpha synthesis in bovine endometrial stromal cells. The aims of the present study were to determine the effect of interferon-tau (IFNtau) on TNFalpha-stimulated PGF2alpha synthesis and the intracellular mechanisms of TNFalpha and IFNtau action in the stromal cells. When cultured bovine stromal cells were exposed to TNFalpha (0.006-0.6 nM) for 24 h, the production of PGF2alpha and cyclooxygenase (COX)-2 gene expression were stimulated by TNFalpha (0.06-0.6 nM, P < 0.05). Moreover, a specific COX-2 inhibitor (NS-398; 5 nM) blocked the stimulatory effect of TNFalpha on PGF2alpha production (P < 0.05). Although IFNtau (0.03-30 ng/ml) did not stimulate basal PGF2alpha production in the stromal cells, it suppressed TNFalpha action in PGF2alpha production dose dependently (P < 0.05). Moreover, the stimulatory effect of TNFalpha (0.6 nM) on COX-2 gene expression was completely blocked by IFNtau (30 ng/ml; P < 0.05), although the gene expression of COX-2 was not influenced by IFNtau. The overall results indicate that the stimulatory effect of TNFalpha on PGF2alpha production is mediated by the up-regulation of COX-2 gene expression and suggest that one of the mechanisms of the inhibitory effect of IFNtau on luteolysis is the inhibition of TNFalpha action in PGF2alpha production in the stromal cells by the down-regulation of COX-2 gene expression stimulated by TNFalpha.  相似文献   

7.
J G Betts  P J Hansen 《Life sciences》1992,51(14):1171-1176
Bovine endometrium was obtained on day 16 of pregnancy (estrus = 0) and separated into epithelial and stromal cell populations. When confluent, the two cell populations were treated for 24 h with cytokines at 1, 10 and 100 ng/ml. Prostaglandin (PG) E2 was the major prostaglandin produced by both cell types. For control cultures, more PGE2 was secreted into medium by stromal cells than by epithelial cells, whereas secretion of PGF was similar for epithelial and stromal cells. Interleukin-1 beta had no effect on prostaglandin production by stromal cell cultures but increased epithelial production of PGE2 and, to a lesser extent, PGF. Conversely, granulocyte-macrophage colony stimulating factor had no effect on epithelial cells but reduced secretion of PGE2 and PGF from stromal cells. There were no effects of interleukin-2 or tumor necrosis factor-alpha on prostaglandin secretion. Results indicate that certain cytokines can regulate endometrial prostaglandin secretion in a cell type-restricted manner.  相似文献   

8.
The effect of progesterone on oxytocin-induced secretion of prostaglandin (PG) F(2alpha) from bovine endometrial tissue explants was examined. Endometrial tissue from the late luteal phase were preincubated for 20 h in control medium. Explants were then treated for 6 h with control medium, oxytocin (10(-7) M), progesterone (10(-5) M), or both hormones. Oxytocin increased the medium concentration of 13,14-dihydro-15-keto-PGF(2alpha), whereas progesterone completely suppressed the stimulatory effect of oxytocin. In experiment 2, isolated endometrial epithelial cells were incubated with progesterone (10(-5) M), oxytocin (10(-7) M), and combinations of these hormones with or without actinomycin D (1 ng/ml). Only oxytocin stimulated secretion of PGF(2alpha), and this response was suppressed by progesterone. Oxytocin induced a rapid increase in intracellular concentrations of Ca(2+) detected within 1 min of exposure of epithelial cells from the same cows. Progesterone pretreatment diminished this response. In experiment 3, direct effects of progesterone (2 nM-20 microM) on binding of (3)H-oxytocin to the membrane preparation from epithelial cells were determined by saturation analysis. Oxytocin binding was suppressed by progesterone at every dosage tested. Progesterone is capable of suppressing the ability of oxytocin to induce endometrial secretion of PGF(2alpha). This effect appears to be mediated through a direct interference in the interaction of oxytocin with its own receptor.  相似文献   

9.
Incubation of human erythrocyte membrane with low concentration of prostaglandin E1 or prostacyclin increased the binding of 125I-labeled insulin to the membrane. The binding of the radioiodinated hormone was maximally stimulated at 3 nM prostaglandin E1 and the use of higher concentrations (above 8 nM) of the autacoid tended to reverse its own effect at lower concentrations. While prostaglandins A1, A2, B1, B2, D2, F1 alpha, F2 alpha or 6-keto-prostaglandin F1 alpha had no effect on the binding of insulin to the erythrocyte membrane, prostaglandin E2 at similar concentrations decreased the binding of the hormone. The effect of prostaglandin E1 on the increased binding of the insulin was found to be reversible and depended on the occupancy of the autacoid molecules on the membrane and showed positive cooperativity. Scatchard analysis of the binding of 125I-labeled insulin to the erythrocyte ghosts indicated that in the presence of the autacoid, the binding capacity of the insulin receptor increased 2-fold (from 207 to 424 fmol/mg protein) without any change in the ghosts affinity for the ligand (Kd 2.4 X 10(-9) versus 2.49 X 10(-9) M). As a consequence of increased binding of insulin to the erythrocyte membrane in the presence of prostaglandin E1 (3.0 nM), the optimal concentration of the peptide hormone for the maximal reduction of the membrane microviscosity decreased from approx. 1.6 to approx. 0.4 nM. Addition of prostaglandin E1 alone at the above concentration to the assay mixture had no effect on the membrane microviscosity.  相似文献   

10.
Epidermal growth factor (EGF) and its receptor have been implicated in the control of uterine cell growth and differentiation. The objectives of this study were to determine EGF binding characteristics and effects of EGF on prostaglandin (PG) production in vitro by glandular and stromal cells from porcine endometrium. Endometrial tissues were taken from 10 sows on Day 13 of pregnancy (first day of estrus = Day 0). Glandular and stromal cells were separated by enzymatic dispersion and sieve filtration and cultured for 3 days. EGF-binding assay was carried out at 20 degrees C in the presence of 0.2 nM 125I-EGF with increasing concentrations of unlabeled EGF (0-12 nM). Scatchard analyses revealed one class of high-affinity binding sites in each cell type with apparent equilibrium dissociation constants (n = 6) of 2.96 +/- 0.60 nM and 2.48 +/- 0.50 nM for stromal and glandular cells, respectively. The apparent binding capacities were 199.3 +/- 34.8 fmol/10(6) cells for stromal cells and 40.7 +/- 6.5 fmol/10(6) cells for glandular cells. Effects of EGF on PG production were determined by including 1, 5, 10, or 20 ng/ml EGF in the medium for the final 24 h of the 72-h culture. EGF increased PGE (p less than 0.01) and PGF2 alpha (p less than 0.05) secretion by stromal cells. The highest concentration (20 ng/ml) of EGF increased secretion of PGE and PGF2 alpha by 133% and 64%, respectively, over controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号