首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The immunogenic effect of Salmonella typhi OmpC porin during typhoid fever in humans was evaluated in vitro. Peripheral blood mononuclear cells from 17 patients were challenged with outer membrane preparations from Escherichia coli UH302 and UH302/pSTP2K2 strains, both lacking E. coli OmpF and OmpC porins, although UH302/pSTP2K2 expressed a plasmid-encoded S. typhi Ty2 OmpC. The mononuclear cell supernatants, immunized in vitro with OmpC antigen, derived from 10 out of 17 patients activated U937 bactericidal capacity. In contrast, the supernatants from the immunization with outer membrane preparation lacking S. typhi Ty2 OmpC induced a significantly reduced bactericidal capacity of U937 cells. This procedure should prove useful for in vitro characterization of cellular immunogens from exclusive human pathogens.  相似文献   

2.
Summary OmpC and OmpF are major outer membrane proteins and although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine their differences, we have constructed a series of ompC-ompF chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The recombination sites in the chimeric genes were localized by means of restriction endonuclease analysis and nucleotide sequence determination. Most of the chimeric gene products were accumulated in the outer membrane. One of the chimeric gene products, with a fusion site in a central region between the OmpC and OmpF proteins, was normally expressed but not accumulated in the outer membrane. The trimeric structures of some of the chimeric gene products appeared to be extremely unstable in a SDS solution. From these results, domains contributing to the formation of specific structures in which the OmpC and OmpF proteins differ were identified. Bacterial cells possessing the chimeric gene products were also investigated as to their sensitivity to phages that require either OmpC or OmpF as a receptor component. With the aid of the chimeric gene products, the immunogenic determinants for three anti-OmpC monoclonal antibodies were found to be localized at different portions of the OmpC polypeptide: the N-terminal, central and C-terminal portions, respectively.  相似文献   

3.
Three-dimensional models of the chimeric S. typhi OmpC protein carrying an epitope from rotavirus VP4 capsid protein on either of two exposed loops (fourth and sixth) were constructed separately, using computer-aided homology modelling. The theoretical model of S. typhi OmpC was used as a template. The monomers were initially energy minimized. The trimers were generated for both the chimeric S. typhi OmpC proteins and the structures were optimized after several cycles of minimization. The surface accessibility calculations for the resulting models show that epitope recognition should be more effective in the fourth loop than in the sixth loop, in accordance with the experimental results on the immunogenic nature of the rotaviral epitope inserted into the two putative loops of S. typhi OmpC.  相似文献   

4.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

5.
OmpC and OmpF, outer membrane porin proteins, are important in the maintenance of the cell surface structure of Escherichia coli cells [T. Nogami and S. Mizushima, J. Bacteriol., 156, 402 (1983)]. Mutants lacking both proteins are unstable and frequently revert or mutate to strains which either have regained one or both of the proteins or constitutively produce PhoE, another porin protein. In the present work, the structural importance of PhoE was studied in relation to OmpC. and OmpF. The strain devoid of both OmpC and OmpF was highly susceptible to Tris-HCl buffer at a concentration of 120 mm in terms of viability and cell structure. This strain was also susceptible to osmotic shock. In contrast, the strain possessing PhoE in place of OmpC/OmpF was as stable as the strain possessing OmpC/OmpF against these treatments. PhoE, like OmpC and OmpF, was assembled into a hexagonal lattice with lipopolysaccharide that covered the peptidoglycan sacculus. These results suggest that PhoE can take the place of OmpC/OmpF in the maintenance of the cell surface structure. The importance of porins in general in the maintenance of the cell structure is discussed.  相似文献   

6.
The coat protein of cardamom mosaic virus (CdMV), a member of the genus Macluravirus, assembles into virus‐like particles when expressed in an Escherichia coli expression system. The N and C‐termini of the coat protein were engineered with the Kennedy peptide and the 2F5 and 4E10 epitopes of gp41 of HIV. The chimeric proteins reacted with sera from HIV positive persons and also stimulated secretion of cytokines by peripheral blood mononuclear cells from these persons. Thus, a system based on the coat protein of CdMV can be used to display HIV‐1 antigens.  相似文献   

7.
OmpF and OmpC are major outer membrane proteins. Although they are homologous proteins, they function differently in several respects. As an approach to elucidate the submolecular structures that determine the difference, a method was developed to construct a series of ompF-ompC chimeric genes by in vivo homologous recombination between these two genes, which are adjacent on a plasmid. The genomic structures of these chimeric genes were determined by restriction endonuclease analysis and nucleotide sequence determination. In almost all cases, recombination took place between the corresponding homologous regions of the ompF and ompC genes. Many of the chimeric genes produced proteins that migrated to various positions between the OmpF and OmpC proteins on polyacrylamide gel. On the basis of the results, a domain contributing to the mobility difference the OmpF and OmpC proteins was identified. Some chimeric genes did not accumulate outer membrane proteins, despite the fact that the fusion of the ompF and ompC genes was in frame. Bacterial cells possessing the chimeric proteins were also tested as to their sensitivity to phages which require either OmpF or OmpC as a receptor component. The chimeric proteins were either of the OmpF or OmpC type with respect to receptor activity. Based on the observations, the roles of submolecular domains in the structure, function, and biogenesis of the OmpF and OmpC proteins are discussed.  相似文献   

8.
9.
Expression of the Escherichia coli OmpC and OmpF outer membrane proteins is regulated by the osmolarity of the culture media. In contrast, expression of OmpC in Salmonella typhi is not influenced by osmolarity, while OmpF is regulated as in E. coli. To better understand the lack of osmoregulation of OmpC expression in S. typhi, we compared the expression of the ompC gene in S. typhi and E. coli, using ompC-lacZ fusions and outer membrane protein (OMP) electrophoretic profiles. S. typhi ompC expression levels in S. typhi were similar at low and high osmolarity along the growth curve, whereas osmoregulation of E. coli ompC in E. coli was observed during the exponential phase. Both genes were highly expressed at high and low osmolarity when present in S. typhi, while expression of both was regulated by osmolarity in E. coli. Complementation experiments with either the S. typhi or E. coli ompB operon in an S. typhi ΔompB strain carrying the ompC-lacZ fusions showed that both S. typhi and E. coli ompC were not regulated by osmolarity when they were under the control of S. typhi ompB. Interestingly, in the same strain, both genes were osmoregulated under E. coli ompB. Surprisingly, in E. coli ΔompB, they were both osmoregulated under S. typhi or E. coli ompB. Thus, the lack of osmoregulation of OmpC expression in S. typhi is determined in part by the ompB operon, as well as by other unknown trans-acting elements present in S. typhi.  相似文献   

10.
This study was undertaken to investigate the proposed in vivo pore function of PhoE protein, an Escherichia coli K12 outer membrane protein induced by growth under phosphate limitation, and to compare it with those of the constitutive pore proteins OmpF and OmpC. Appropriate mutant strains were constructed containing only one of the proteins PhoE, OmpF or OmpC, or none of these proteins at all. By measuring rates of nutrient uptake at low solute concentrations, the proposed pore function of PhoE protein was confirmed as the presence of the protein facilitates the diffusion of Pi through the outer membrane, such that a pore protein deficient strain behaves as a Km mutant. Comparison of the rates of permeation of Pi, glycerol 3-phosphate and glucose 6-phosphate through pores formed by PhoE, OmpF and OmpC proteins shows that PhoE protein is the most effective pore in facilitating the diffusion of Pi and phosphorus-containing compounds. The three types of pores were about equally effective in facilitating the permeation of glucose and arsenate. Possible reasons for the preference for Pi and Pi-containing solutes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号