首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Aggregation of β‐amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble β‐amyloid aggregation using synthetic β‐sheet breaker peptides that are capable of binding Aβ but are unable to become part of a β‐sheet structure. As the early stages of the Aβ aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the β‐sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the β‐sheet breaker peptide acetyl‐LPFFD‐amide, iAβ5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C‐ and at the N‐terminus or phospholipids spin‐labeled in different positions of the acyl chain. Our results show that iAβ5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAβ5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
As research progresses toward understanding the role of the amyloid‐β (Aβ) peptide in Alzheimer's disease, certain aspects of the aggregation process for Aβ are still not clear. In particular, the accepted constitution of toxic aggregates in neurons has shifted toward small oligomers. However, the process of forming these oligomers in cells is also not full clear. Even more interestingly, it has been implied that cell membranes, and, in particular, anionic lipids within those membranes, play a key role in the progression of Aβ aggregation, but the exact nature of the Aβ‐membrane interaction in this process is unknown. In this work, we use a thermodynamic cycle and umbrella sampling molecular dynamics to investigate dimerization of the 42‐residue Aβ peptide on model zwitterionic dipalmitoylphosphatidylcholine (DPPC) or model anionic dioleoylphosphatidylserine (DOPS) bilayer surfaces. We determined that Aβ dimerization was strongly favored through interactions with the DOPS bilayer. Further, our calculations showed that the DOPS bilayer promoted strong protein–protein interactions within the Aβ dimer, whereas DPPC favored strong protein–lipid interactions. By promoting dimer formation and subsequent dimer release into the solvent, the DOPS bilayer acts as a catalyst in Aβ aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Earlier immunological experiments with a synthetic 36‐residue peptide (75‐110) from Influenza hemagglutinin have been shown to elicit anti‐peptide antibodies (Ab) which could cross‐react with the parent protein. In this article, we have studied the conformational features of a short antigenic (Ag) peptide (98YPYDVPDYASLRS110) from Influenza hemagglutinin in its free and antibody (Ab) bound forms with molecular dynamics simulations using GROMACS package and OPLS‐AA/L all‐atom force field at two different temperatures (293 K and 310 K). Multiple simulations for the free Ag peptide show sampling of ordered conformations and suggest different conformational preferences of the peptide at the two temperatures. The free Ag samples a conformation crucial for Ab binding (β‐turn formed by “DYAS” sequence) with greater preference at 310 K while, it samples a native‐like conformation with relatively greater propensity at 293 K. The sequence “DYAS” samples β‐turn conformation with greater propensity at 310 K as part of the hemagglutinin protein also. The bound Ag too samples the β‐turn involving “DYAS” sequence and in addition it also samples a β‐turn formed by the sequence “YPYD” at its N‐terminus, which seems to be induced upon binding to the Ab. Further, the bound Ag displays conformational flexibility at both 293 K and 310 K, particularly at terminal residues. The implications of these results for peptide immunogenicity and Ag–Ab recognition are discussed. Proteins 2015; 83:1352–1367. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Alzheimer's disease is a progressive neurodegenerative disease characterized by extracellular deposits of β‐amyloid (Aβ) plaques. Aggregation of the Aβ42 peptide leading to plaque formation is believed to play a central role in Alzheimer's disease pathogenesis. Anti‐Aβ monoclonal antibodies can reduce amyloid plaques and could possibly be used for immunotherapy. We have developed a monoclonal antibody C706, which recognizes the human Aβ peptide. Here we report the crystal structure of the antibody Fab fragment at 1.7 Å resolution. The structure was determined in two crystal forms, P21 and C2. Although the Fab was crystallized in the presence of Aβ16, no peptide was observed in the crystals. The antigen‐binding site is blocked by the hexahistidine tag of another Fab molecule in both crystal forms. The poly‐His peptide in an extended conformation occupies a crevice between the light and heavy chains of the variable domain. Two consecutive histidines (His4–His5) stack against tryptophan residues in the central pocket of the antigen‐binding surface. In addition, they form hydrogen bonds to the acidic residues at the bottom of the pocket. The mode of his‐tag binding by C706 resembles the Aβ recognition by antibodies PFA1 and WO2. All three antibodies recognize the same immunodominant B‐cell epitope of Aβ. By similarity, residues Phe–Arg–His of Aβ would be a major portion of the C706 epitope. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Amyloid‐β peptides (Aβs) are generated in a membrane‐embedded state by sequential processing of amyloid precursor protein (APP). Although shedding of membrane‐embedded Aβ is essential for its secretion and neurotoxicity, the mechanism behind shedding regulation is not fully elucidated. Thus, we devised a Langmuir film balance‐based assay to uncover this mechanism. We found that Aβ shedding was enhanced under acidic pH conditions and in lipid compositions resembling raft microdomains, which are directly related to the microenvironment of Aβ generation. Furthermore, Aβ shedding efficiency was determined by the length of the C‐terminal membrane‐spanning region, whereas pH responsiveness appears to depend on the N‐terminal ectodomain. These findings indicate that Aβ shedding may be directly coupled to its generation and represents an unrecognized control mechanism regulating the fate of membrane‐embedded products of APP processing.  相似文献   

8.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
Replica exchange molecular dynamics simulations (300 ns) were used to study the dimerization of amyloid β(1‐40) (Aβ(1‐40)) polypeptide. Configurational entropy calculations revealed that at physiological temperature (310 K, 37°C) dynamic dimers are formed by randomly docked monomers. Free energy of binding of the two chains to each other was ?93.56 ± 6.341 kJ mol?1. Prevalence of random coil conformations was found for both chains with the exceptions of increased β‐sheet content from residues 16‐21 and 29‐32 of chain A and residues 15‐21 and 30‐33 of chain B with β‐turn/β‐bend conformations in both chains from residues 1‐16, 21‐29 of chain A, 1‐16, and 21‐29 of chain B. There is a mixed β‐turn/β‐sheet region from residues 33‐38 of both chains. Analysis of intra‐ and interchain residue distances shows that, although the individual chains are highly flexible, the dimer system stays in a loosely packed antiparallel β‐sheet configuration with contacts between residues 17‐21 of chain A with residues 17‐21 and 31‐36 of chain B as well as residues 31‐36 of chain A with residues 17‐21 and 31‐36 of chain B. Based on dihedral principal component analysis, the antiparallel β‐sheet‐loop‐β‐sheet conformational motif is favored for many low energy sampled conformations. Our results show that Aβ(1‐40) can form dynamic dimers in aqueous solution that have significant conformational flexibility and are stabilized by collapse of the central and C‐terminal hydrophobic cores with the expected β‐sheet‐loop‐β‐sheet conformational motif. Proteins 2017; 85:1024–1045. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Little is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β‐amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition. Brain extracts from these mice were serially diluted and inoculated into host mice. Strikingly, the seeding activity (seeding dose SD50) in extracts from donor mice of both models reached a plateau relatively early in the amyloidogenic process. When normalized to total brain Aβ, the resulting specific seeding activity sharply peaked at the initial phase of Aβ deposition, which in turn is characterized by a temporary several‐fold increase in the Aβ42/Aβ40 ratio. At all stages, the specific seeding activity of the APPPS1 extract was higher compared to that of APP23 brain extract, consistent with a more important contribution of Aβ42 than Aβ40 to seed activity. Our findings indicate that the Aβ seeding potency is greatest early in the pathogenic cascade and diminishes as Aβ increasingly accumulates in brain. The present results provide experimental support for directing anti‐Aβ therapeutics to the earliest stage of the pathogenic cascade, preferably before the onset of amyloid deposition.  相似文献   

11.
We previously studied a 16‐amino acid‐residue fragment of the C‐terminal β‐hairpin of the B3 domain (residues 46–61), [IG(46–61)] of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG (46–61) by systematically shortening the peptide by one residue at a time from both the C‐ and the N‐terminus. To determine the structure and stability of two resulting 12‐ and 14‐amino acid‐residue peptides, IG(48–59) and IG(47–60), respectively, we carried out circular dichroism, NMR, and calorimetric studies of these peptides in pure water. Our results show that IG(48–59) possesses organized three‐dimensional structure stabilized by hydrophobic interactions (Tyr50–Phe57 and Trp48–Val59) at T = 283 and 305 K. At T = 313 K, the structure breaks down because of increased chain entropy, but the turn region is preserved in the same position observed for the structure of the whole protein. The breakdown of structure occurs near the melting temperature of this peptide (Tm = 310 K) measured by differential scanning calorimetry (DSC). The melting temperature of IG(47–60) determined by DSC is Tm = 330 K and its structure is similar to that of the native β‐hairpin at all (lower) temperatures examined (283–313 K). Both of these truncated sequences are conserved in all known amino acid sequences of the B domains of the immunoglobulin binding protein G from bacteria. Thus, this study contributes to an understanding of the mechanism of folding of this whole family of proteins, and provides information about the mechanism of formation and stabilization of a β‐hairpin structural element. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The metal ions Zn2+, Cu2+, and Fe2+ play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06‐2X/6‐311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1‐42‐Zn2+, Aβ1‐42‐Cu2+, and Aβ1‐42‐Fe2+ systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N‐terminal. The present investigation, the Aβ1‐42‐Zn2+ system possess three turn conformations separated by coil structure. Zn2+ binding caused the loss of the helical structure of N‐terminal residues which transformed into the S‐shaped conformation. Zn2+ has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu2+ binds with peptide, β sheet formation is observed at the N‐terminal residues of the peptide. Fe2+ binding is to promote the formation of Glu22‐Lys28 salt‐bridge which stabilized the turn conformation in the Phe19‐Gly25 residues, subsequently β sheets were observed at His13‐Lys18 and Gly29‐Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe2+ binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe2+ promotes the oligomerization by enhancing the peptide‐peptide interaction. Proteins 2016; 84:1257–1274. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

15.
Abnormal aggregation of β‐amyloid (Aβ) peptide plays an important role in the onset and progress of Alzheimer's disease (AD); hence, targeting Aβ aggregation is considered as an effective therapeutic strategy. Here, we studied the aromatic‐interaction‐mediated inhibitory effect of oligomeric polypeptides (K8Y8, K4Y8, K8W8) on Aβ42 fibrillization process. The polypeptides containing lysine as well as representative aromatic amino acids of tryptophan or tyrosine were found to greatly suppress the aggregation as evaluated by thioflavin T assay. Circular dichroism spectra showed that the β‐sheet formation of Aβ42 peptides decreased with the polypeptide additives. Molecular docking studies revealed that the oligomeric polypeptides could preferentially bind to Aβ42 through π–π stacking between aromatic amino acids and Phe19, together with hydrogen bonding. The cell viability assay confirmed that the toxicity of Aβ42 to SH‐SY5Y cells was markedly reduced in the presence of polypeptides. This study could be beneficial for developing peptide‐based inhibitory agents for amyloidoses. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The mechanisms of interfacial folding and membrane insertion of the Alzheimer's amyloid‐β fragment Aβ(25–35) and its less toxic mutant, N27A‐Aβ(25–35) and more toxic mutant, M35A‐Aβ(25–35), are investigated using replica–exchange molecular dynamics in an implicit water‐membrane environment. This study simulates the processes of interfacial folding and membrane insertion in a spontaneous fashion to identify their general mechanisms. Aβ(25–35) and N27A‐Aβ(25–35) peptides share similar mechanisms: the peptides are first located in the membrane hydrophilic region where their C‐terminal residues form helical structures. The peptides attempt to insert themselves into the membrane hydrophobic region using the C‐terminal or central hydrophobic residues. A small portion of peptides can successfully enter the membrane's hydrophobic core, led by their C‐terminal residues, through the formation of continuous helical structures. No detectable amount of M35A‐Aβ(25–35) peptides appeared to enter the membrane's hydrophobic core. The three studied peptides share a similar helical structure for their C‐terminal five residues, and these residues mainly buried within the membrane's hydrophobic region. In contrast, their N‐terminal properties are markedly different. With respect to the Aβ(25–35), the N27A‐Aβ(25–35) forms a more structured helix and is buried deeper within the membrane, which may result in a lower degree of aggregation and a lower neurotoxicity; in contrast, the less structured and more water‐exposed M35A‐Aβ(25–35) is prone to aggregation and has a higher neurotoxicity. Understanding the mechanisms of Aβ peptide interfacial folding and membrane insertion will provide new insights into the mechanisms of neurodegradation and may give structure‐based clues for rational drug design preventing amyloid associated diseases. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Aggregation, orientation and dynamics of transmembrane helices are of relevance for protein function and transmembrane signaling. To explore the interactions of transmembrane helices and the interdependence of peptide structure and lipid composition of the membranes, β‐peptides were explored as model transmembrane domains. Various hydrophobic β‐peptide sequences were synthesized by solid phase peptide synthesis. Conformational analyses of β‐peptide helices were performed in organic solvents (methanol and 2,2,2‐trifluoroethanol) and in large unilamellar liposomes (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine) indicating 12‐ and 14‐helix conformations, depending on β3‐amino acid sequences. The intrinsic tryptophan fluorescence of β3‐homotryptophan units inserted in the center or near the end of the sequence was used to verify the membrane insertion of the β‐peptides. A characteristic blue shift with peripheral β3‐homotryptophan compared with β‐peptides with central tryptophan served as indication for a transmembrane orientation of the β‐peptides within the lipid bilayer. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Replica exchange molecular dynamics and all‐atom implicit solvent model are used to compute the structural propensities in Aβ monomers, dimers, and Aβ peptides bound to the edge of amyloid fibril. These systems represent, on an approximate level, different stages in Aβ aggregation. Aβ monomers are shown to form helical structure in the N‐terminal (residues 13 to 21). Interpeptide interactions in Aβ dimers and, especially, in the peptides bound to the fibril induce a dramatic shift in the secondary structure, from helical states toward β‐strand conformations. The sequence region 10–23 in Aβ peptide is found to form most of interpeptide interactions upon aggregation. Simulation results are tested by comparing the chemical shifts in Aβ monomers computed from simulations and obtained experimentally. Possible implications of our simulations for designing aggregation‐resistant variants of Aβ are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Some neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are caused by protein misfolding. In AD, amyloid β‐peptide (Aβ) is thought to be a toxic agent by self‐assembling into a variety of aggregates involving soluble oligomeric intermediates and amyloid fibrils. Here, we have designed several green fluorescent protein (GFP) variants that contain pseudo‐Aβ β‐sheet surfaces and evaluated their abilities to bind to Aβ and inhibit Aβ oligomerization. Two GFP variants P13H and AP93Q bound tightly to Aβ, Kd = 260 nM and Kd = 420 nM, respectively. Moreover, P13H and AP93Q were capable of efficiently suppressing the generation of toxic Aβ oligomers as shown by a cell viability assay. By combining the P13H and AP93Q mutations, a super variant SFAB4 comprising four strands of Aβ‐derived sequences was designed and bound more tightly to Aβ (Kd = 100 nM) than those having only two pseudo‐Aβ strands. The SFAB4 protein preferentially recognized the soluble oligomeric intermediates of Aβ more than both unstructured monomer and mature amyloid fibrils. Thus, the design strategy for embedding pseudo‐Aβ β‐sheet structures onto a protein surface arranged in the β‐barrel structure is useful to construct molecules capable of binding tightly to Aβ and inhibiting its aggregation. This strategy may provide implication for the diagnostic and therapeutic development in the treatment of AD. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Beta‐amyloid peptide (Aβ) is the major protein constituent found in senile plaques in Alzheimer's disease (AD). It is believed that Aβ plays a role in neurodegeneration associated with AD and that its toxicity is related to its structure or aggregation state. In this study, an approach based on chemical modification of primary amines and mass spectrometric (MS) detection was used to identify residues on Aβ peptide that were exposed or buried upon changes in peptide structure associated with aggregation. Results indicate that the N terminus was the most accessible primary amine in the fibril, followed by lysine 28, then lysine 16. A kinetic analysis of the data was then performed to quantify differences in accessibility between these modification sites. We estimated apparent equilibrium unfolding constants for each modified site of the peptide, and determined that the unfolding constant for the N terminus was approximately 100 times greater than that for K28, which was about six times greater than that for K16. Understanding Aβ peptide structure at the residue level is a first step in designing novel therapies for prevention of Aβ structural transitions and/or cell interactions associated with neurotoxicity in Alzheimer's disease. Biotechnol. Bioeng. 2009; 104: 181–192 © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号