首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the pathogenesis‐related protein 1 (PR‐1) family are well‐known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR‐1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor‐like kinases (RLKs). These proteins (TcPR‐1f and TcPR‐1g) were named PR‐1 receptor kinases (PR‐1RKs). Phylogenetic analysis of RLKs and PR‐1 proteins from cacao indicated that PR‐1RKs originated from a fusion between sequences encoding PR‐1 and the kinase domain of a LecRLK (Lectin Receptor‐Like Kinase). Retrotransposition marks surround TcPR‐1f, suggesting that retrotransposition was involved in the origin of PR‐1RKs. Genes with a similar domain architecture to cacao PR‐1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR‐1g expression was up‐regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR‐1RKs during cacao defence responses. We hypothesize that PR‐1RKs transduce a defence signal by interacting with a PR‐1 ligand.  相似文献   

2.
The role of the plant defence activator, acibenzolar‐S‐methyl (ASM), in inducing resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) was studied. Application of ASM induced resistance in rice to infection by Xoo. When the pathogen was clip‐inoculated to the rice plants, it caused bacterial leaf blight symptoms in the untreated control. However, in the rice plants pretreated with ASM, infection was significantly reduced. Induced systemic resistance was found to persist for up to 3 days in the pretreated rice plants. Increased phenolic content and accumulation of pathogenesis‐related (PR) proteins, viz. chitinase, β‐1,3‐glucanase and thaumatin‐like protein (TLP; PR 5) were observed in rice plants pretreated with ASM followed by inoculation with Xoo. Immunoblot analysis using rice TLP and tobacco chitinase antiserum revealed rapid induction and over‐expression of 25 and 35 kDa TLP and chitinase, respectively, in rice in response to pretreatment with ASM followed by Xoo inoculation. Based on these experiments, it is evident that induction of disease resistance in rice was accelerated following treatment with ASM.  相似文献   

3.
4.
5.
Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea–Foc interactions.  相似文献   

6.
7.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
β‐aminobutyric acid (BABA) was assessed for the ability to protect two artichoke cultivars, C3 and Exploter, against white mould caused by Sclerotinia sclerotiorum, which represents a major problem in the cultivation of this crop in many growing areas of Central Italy. Changes in the activity and isoenzymatic profiles of the pathogenesis‐related (PR) proteins β‐1,3‐glucanase, chitinase and peroxidase in plantlets upon BABA treatment and following inoculation of the pathogen in plantlets and leaves detached from adult plants were also investigated as molecular markers of induced resistance and priming. BABA treatments by soil drenching induced a high level of resistance against S. sclerotiorum in artichoke plantlets of both cultivars C3 and Exploter with a similar level of protection and determined a consistent increase in peroxidase activity paralleled with the differential induction of alkaline isoenzyme with a pI 8.6. A consistent change was found in Exploter in the peroxidase activity following BABA treatments and pathogen inoculation and was paralleled with the expression of an anionic band in plantlets and both anionic and cationic bands in leaves. Our results showed a correlation between BABA‐induced resistance (BABA‐IR) and a augmented capacity to express basal defence responses, more pronounced in cultivar C3 and associated β‐1,3‐glucanase accumulation in both plantlets and leaves inoculated with the pathogen, whereas chitinase resulted affected only at plantlet stage. The present results represent the first one showing the effect of BABA in inducing resistance in artichoke and associated accumulation of selected PRs. If confirmed in field tests, the use of BABA at early plant stages may represent a promising approach to the control soilborne pathogens, such as the early infection of S. sclerotiorum.  相似文献   

9.
10.
The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β‐galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall‐modifying enzymes in germinative and/or post‐germinative events. At the start of germination, only βV‐Gal, and to a lesser extent βIV‐Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β‐galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post‐germinative roles to βI‐Gal and βIII‐Gal as cell wall modifiers in vascular tissue elements. βIV‐Gal and βV‐Gal participate in the initial events of germination in which cell walls are involved: βV‐Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV‐Gal in thickening of the primary cell wall. Together with other cell wall‐modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination.  相似文献   

11.
The aspartyl protease BACE1 cleaves neuregulin 1 and is involved in myelination and is a candidate drug target for Alzheimer's disease, where it acts as the β‐secretase cleaving the amyloid precursor protein. However, little is known about other substrates in vivo. Here, we provide a proteomic workflow for BACE1 substrate identification from whole brains, combining filter‐aided sample preparation, strong‐anion exchange fractionation, and label‐free quantification. We used bace1‐deficient zebrafish and quantified differences in protein levels between wild‐type and bace1 ?/? zebrafish brains. Over 4500 proteins were identified with at least two unique peptides and quantified in both wild‐type and bace1 ?/? zebrafish brains. The majority of zebrafish membrane proteins did not show altered protein levels, indicating that Bace1 has a restricted substrate specificity. Twenty‐four membrane proteins accumulated in the bace1 ?/? brains and thus represent candidate Bace1 substrates. They include several known BACE1 substrates, such as the zebrafish homologs of amyloid precursor protein and the cell adhesion protein L1, which validate the proteomic workflow. Additionally, several candidate substrates with a function in neurite outgrowth and axon guidance, such as plexin A3 and glypican‐1 were identified, pointing to a function of Bace1 in neurodevelopment. Taken together, our study provides the first proteomic analysis of knock‐out zebrafish tissue and demonstrates that combining gene knock‐out models in zebrafish with quantitative proteomics is a powerful approach to address biomedical questions.  相似文献   

12.
The discovery of ubiquitin‐like small archaeal modifier protein 2 (SAMP2) that forms covalent polymeric chains in Haloferax volcanii has generated tremendous interest in the function and regulation of this protein. At present, it remains unclear whether the Hfx. volcanii modifier protein SAMP1 has such polyubiquitinating‐like activity. Although SAMP1 and SAMP2 use the same conjugation machinery to modify their target proteins, each can impart distinct functional consequences. To better understand the mechanism of SAMP2 conjugation, we have sought to characterize the biophysical and structural properties of the protein from Hfx. volcanii. SAMP2 is only partially structured under mesohalic solution conditions and adopts a well‐folded compact conformation in the presence of 2.5M of NaCl. Its 2.3‐Å‐resolution crystal structure reveals a characteristic α/β central core domain and a unique β‐hinge motif. This motif anchors an unusual C‐terminal extension comprising the diglycine tail as well as two lysine residues that can potentially serve to interlink SAMP2 moieties. Mutational alternation of the structural malleability of this β‐hinge motif essentially abolishes the conjugation activity of SAMP2 in vivo. In addition, NMR structural studies of the putative ubiquitin‐like protein HVO_2177 from Hfx. volcanii show that like SAMP1, HVO_2177 forms a classic β‐grasp fold in a salt‐independent manner. These results provide insights into the structure–function relationship of sampylating proteins of fundamental importance in post‐translational protein modification and environmental cues in Archaea.  相似文献   

13.
In many prokaryotic organisms, chromosomal loci known as clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR‐associated (CAS) genes comprise an acquired immune defense system against invading phages and plasmids. Although many different Cas protein families have been identified, the exact biochemical functions of most of their constituents remain to be determined. In this study, we report the crystal structure of PF1127, a Cas protein of Pyrococcus furiosus DSM 3638 that is composed of 480 amino acids and belongs to the Csx1 family. The C‐terminal domain of PF1127 has a unique β‐hairpin structure that protrudes out of an α‐helix and contains several positively charged residues. We demonstrate that PF1127 binds double‐stranded DNA and RNA and that this activity requires an intact β‐hairpin and involve the homodimerization of the protein. In contrast, another Csx1 protein from Sulfolobus solfataricus P2 that is composed of 377 amino acids does not have the β‐hairpin structure and exhibits no DNA‐binding properties under the same experimental conditions. Notably, the C‐terminal domain of these two Csx1 proteins is greatly diversified, in contrast to the conserved N‐terminal domain, which appears to play a common role in the homodimerization of the protein. Thus, although P. furiosus Csx1 is identified as a nucleic acid‐binding protein, other Csx1 proteins are predicted to exhibit different individual biochemical activities. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Aims: To evaluate the potentiality of three rhizosphere microorganisms in suppression of Sclerotinia rot in pea in consortia mode and their impact on host defence responses. Methods and Results: Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 from rhizospheric soils were selected based on compatibility, antagonistic and plant growth promotion activities. The microbes were used as consortia to assess their ability to trigger the phenylpropanoid and antioxidant activities and accumulation of proline, total phenol and pathogenesis‐related (PR) proteins in pea under the challenge of the soft‐rot pathogen Sclerotinia sclerotiorum. The triple‐microbe consortium and single‐microbe treatments showed 1·4–2·3 and 1·1–1·7‐fold increment in defence parameters, respectively, when compared to untreated challenged control. Activation of the phenylpropanoid pathway and accumulation of total phenolics were highest at 48 h, whereas accumulation of proline and PR proteins along with activities of the antioxidant enzymes was highest at 72 h. Conclusions: The compatible microbial consortia triggered defence responses in an enhanced level in pea than the microbes alone and provided better protection against Sclerotinia rot. Significance and Impact of the Study: Rhizosphere microbes in consortium can enhance protection in pea against the soft‐rot pathogen through augmented elicitation of host defence responses.  相似文献   

15.
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co‐immunoprecipitation (Co‐IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co‐IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co‐localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH‐sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR‐1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase‐mediated vesicular secretion of antimicrobial PR‐1, PDF1.2 and possibly other defence‐related compounds.  相似文献   

16.
17.
Saccharomyces cerevisiae expresses two proteins that together support high‐affinity Fe‐uptake. These are a multicopper oxidase, Fet3p, with specificity towards Fe2+ and a ferric iron permease, Ftr1p, which supports Fe‐accumulation. Homologues of the genes encoding these two proteins are found in all fungal genomes including those for the pathogens, Candida albicans and Cryptococcus neoformans. At least one of these loci represents a virulence factor for each pathogen suggesting that this complex would be an appropriate pharmacologic target. However, the mechanism by which this protein pair supports Fe‐uptake in any fungal pathogen has not been elucidated. Taking advantage of the robust molecular genetics available in S. cerevisiae, we identify the two of five candidate ferroxidases likely involved in high‐affinity Fe‐uptake in C. albicans, Fet31 and Fet34. Both localize to the yeast plasma membrane and both support Fe‐uptake along with an Ftr1 protein, either from C. albicans or from S. cerevisiae. We express and characterize Fet34, demonstrating that it is functionally homologous to ScFet3p. Using S. cerevisiae as host for the functional expression of the C. albicans Fe‐uptake proteins, we demonstrate that they support a mechanism of Fe‐trafficking that involves channelling of the CaFet34‐generated Fe3+ directly to CaFtr1 for transport into the cytoplasm.  相似文献   

18.
Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis‐related (PR) proteins. Endo‐β‐1,3‐glucanases (EGases) belong to the PR‐2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti‐P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR‐2 family from Vitis.  相似文献   

19.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

20.
Bacillus pumilus strain EN16 and Bacillus subtilis strain SW1 were tested for their systemic resistance and protection abilities against tobacco mosaic virus disease under greenhouse conditions. The results showed that strain EN16 and SW1 treatment significantly reduced mosaic symptoms and disease severity, resulting in 52 and 71% protection at 14 days of inoculation, respectively. A decreased amount of virus was detected in EN16- or SW1-treated tobacco plants by ELISA. Moreover, 5- and 7-day intervals between inducer treatment and pathogen inoculations were respectively required for strain EN16 and SW1 to induce optimal resistance. Further analysis on phenylalanine ammonia-lyase, peroxidase, polyphenol oxidase and pathogenesis-related (PR) proteins in tobacco showed that the amounts of defense enzymes and PR proteins significantly increased in Bacillus-treated plants challenged with pathogen when compared to control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号