首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BackgroundTrypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin that plays an important role in coping with host cell oxidative response during the infection process, for which it has been described as a virulence factor.MethodsFour residues corresponding to c-TXNPx catalytic and solvent-exposed cysteines were individually mutated to serine by site-specific mutagenesis. Susceptibility to redox treatments and oligomeric dynamics were investigated by western-blot and gel filtration chromatography. Chaperone and peroxidase activities were determined.ResultsIn this study we demonstrated that c-TXNPx exists as different oligomeric forms, from decameric to high molecular mass aggregates. Moreover, c-TXNPx functions as a dual-function protein acting both as a peroxidase and as a molecular chaperone. Its chaperone function was shown to be independent of the presence of catalytic cysteines, even in the reduced and decameric forms, although it is enhanced when the protein is overoxidized leading to the formation of high molecular mass aggregates.Conclusionsc-TXNPx has chaperone activity which does not depend on the redox state. c-TXNPx does not undergo the dimer-decamer transition in the oxidized state described for other peroxiredoxins. Overoxidized c-TXNPx exists as different oligomeric forms from decamer to high molecular mass aggregates which are in a very slow dynamic equilibrium. The non-catalytic C57 residue may have a role in the maintenance of the decameric form, but seems not to have an alternative CP and CR role.General significanceThis study provides novel insights into some key aspects of the oligomerization dynamics and function of c-TXNPx.  相似文献   

2.
The catalytic or functionally important residues of a protein are known to exist in evolutionarily constrained regions. However, the patterns of residue conservation alone are sometimes not very informative, depending on the homologous sequences available for a given query protein. Here, we present an integrated method to locate the catalytic residues in an enzyme from its sequence and structure. Mutations of functional residues usually decrease the activity, but concurrently often increase stability. Also, catalytic residues tend to occupy partially buried sites in holes or clefts on the molecular surface. After confirming these general tendencies by carrying out statistical analyses on 49 representative enzymes, these data together with amino acid conservation were evaluated. This novel method exhibited better sensitivity in the prediction accuracy than traditional methods that consider only the residue conservation. We applied it to some so-called "hypothetical" proteins, with known structures but undefined functions. The relationships among the catalytic, conserved, and destabilizing residues in enzymatic proteins are discussed.  相似文献   

3.
Huang RY  Garai K  Frieden C  Gross ML 《Biochemistry》2011,50(43):9273-9282
Apolipoprotein E, a 34 kDa protein, plays a key role in triglyceride and cholesterol metabolism. Of the three common isoforms (ApoE2, -3, and -4), only ApoE4 is a risk factor for Alzheimer's disease. All three isoforms of wild-type ApoE self-associate to form oligomers, a process that may have functional consequences. Although the C-terminal domain, residues 216-299, of ApoE is believed to mediate self-association, the specific residues involved in this process are not known. Here we report the use of hydrogen/deuterium exchange (H/DX) coupled with enzymatic digestion to identify those regions in the sequence of full-length apoE involved in oligomerization. For this determination, we compared the results of H/DX of the wild-type proteins and those of monomeric forms obtained by modifying four residues in the C-terminal domain. The three wild-type and mutant isoforms show similar structures based on their similar H/DX kinetics and extents of exchange. Regions of the C-terminus (residues 230-270) of the ApoE isoforms show significant differences of deuterium uptake between oligomeric and monomeric forms, confirming that oligomerization occurs at these regions. To achieve single amino acid resolution, we examined the extents of H/DX by using electron transfer dissociation (ETD) fragmentation of peptides representing selected regions of both the monomeric and the oligomeric forms of ApoE4. From these experiments, we could identify the specific residues involved in ApoE oligomerization. In addition, our results verify that ApoE4 is composed of a compact structure at its N-terminal domain. Regions of C-terminal domain, however, appear to lack defined structure.  相似文献   

4.
Abstract

In order to investigate the environmental conditions of amino acid residues in protein molecules, four kinds of packing studies (atomic, geometric, hydrophobic and hydration) were formulated and tested on two proteins; bovine pancreatic trypsin inhibitor (BPTI) and bovine pancreatic ribonuclease S (RNase S). The inter-relationship of these packings on the fluctuations of amino acid residues was analysed by comparing the packing results with the dynamical studies, such as the root-mean-square-deviation values of atomic displacements obtained from the trajectories of molecular dynamics simulation, temperature factor information from crystal structures and residue fluctuations in proteins from continuum model. These analyses yield information about the most fluctuating and most stabilizing residue sites. Comparison of the results obtained by these methods indicate a good agreement, specifying an inverse correlation between the residue packing and fluctuations. This kind of study is helpful in identifying the specific residue sites such as nucleation, receptor binding and antigenic determining sites which in a way indirectly correlates with the functional residues in protein molecules.  相似文献   

5.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
Structural genomics projects are determining the three-dimensional structure of proteins without full characterization of their function. A critical part of the annotation process involves appropriate knowledge representation and prediction of functionally important residue environments. We have developed a method to extract features from sequence, sequence alignments, three-dimensional structure, and structural environment conservation, and used support vector machines to annotate homologous and nonhomologous residue positions based on a specific training set of residue functions. In order to evaluate this pipeline for automated protein annotation, we applied it to the challenging problem of prediction of catalytic residues in enzymes. We also ranked the features based on their ability to discriminate catalytic from noncatalytic residues. When applying our method to a well-annotated set of protein structures, we found that top-ranked features were a measure of sequence conservation, a measure of structural conservation, a degree of uniqueness of a residue's structural environment, solvent accessibility, and residue hydrophobicity. We also found that features based on structural conservation were complementary to those based on sequence conservation and that they were capable of increasing predictor performance. Using a family nonredundant version of the ASTRAL 40 v1.65 data set, we estimated that the true catalytic residues were correctly predicted in 57.0% of the cases, with a precision of 18.5%. When testing on proteins containing novel folds not used in training, the best features were highly correlated with the training on families, thus validating the approach to nonhomologous catalytic residue prediction in general. We then applied the method to 2781 coordinate files from the structural genomics target pipeline and identified both highly ranked and highly clustered groups of predicted catalytic residues.  相似文献   

7.
Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study: protein–protein interactions, protein–nucleic acid interactions, protein–ligand interactions, and catalytic activity of enzymes. Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that discarding amino acids responsible for protein–protein interactions helps in the prediction of those residues although they are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and describe the substitution patterns of amino acids that are under structural restraints only.  相似文献   

8.
Conformational flexibility between structural ensembles is an essential component of enzyme function. Although the broad dynamical landscape of proteins is known to promote a number of functional events on multiple time scales, it is yet unknown whether structural and functional enzyme homologues rely on the same concerted residue motions to perform their catalytic function. It is hypothesized that networks of contiguous and flexible residue motions occurring on the biologically relevant millisecond time scale evolved to promote and/or preserve optimal enzyme catalysis. In this study, we use a combination of NMR relaxation dispersion, model-free analysis, and ligand titration experiments to successfully capture and compare the role of conformational flexibility between two structural homologues of the pancreatic ribonuclease family: RNase A and eosinophil cationic protein (or RNase 3). In addition to conserving the same catalytic residues and structural fold, both homologues show similar yet functionally distinct clusters of millisecond dynamics, suggesting that conformational flexibility can be conserved among analogous protein folds displaying low sequence identity. Our work shows that the reduced conformational flexibility of eosinophil cationic protein can be dynamically and functionally reproduced in the RNase A scaffold upon creation of a chimeric hybrid between the two proteins. These results support the hypothesis that conformational flexibility is partly required for catalytic function in homologous enzyme folds, further highlighting the importance of dynamic residue sectors in the structural organization of proteins.  相似文献   

9.

Background  

Many structural properties such as solvent accessibility, dihedral angles and helix-helix contacts can be assigned to each residue in a membrane protein. Independent studies exist on the analysis and sequence-based prediction of some of these so-called one-dimensional features. However, there is little explanation of why certain residues are predicted in a wrong structural class or with large errors in the absolute values of these features. On the other hand, membrane proteins undergo conformational changes to allow transport as well as ligand binding. These conformational changes often occur via residues that are inherently flexible and hence, predicting fluctuations in residue positions is of great significance.  相似文献   

10.
Hafumi Nishi  Motonori Ota 《Proteins》2010,78(6):1563-1574
Despite similarities in their sequence and structure, there are a number of homologous proteins that adopt various oligomeric states. Comparisons of these homologous protein pairs, in terms of residue substitutions at the protein–protein interfaces, have provided fundamental characteristics that describe how proteins interact with each other. We have prepared a dataset composed of pairs of related proteins with different homo‐oligomeric states. Using the protein complexes, the interface residues were identified, and using structural alignments, the shadow‐interface residues have been defined as the surface residues that align with the interface residues. Subsequently, we investigated residue substitutions between the interfaces and the shadow interfaces. Based on the degree of the contributions to the interactions, the aligned sites of the interfaces and shadow interfaces were divided into primary and secondary sites; the primary sites are the focus of this work. The primary sites were further classified into two groups (i.e. exposed and buried) based on the degree to which the residue is buried within the shadow interfaces. Using these classifications, two simple mechanisms that mediate the oligomeric states were identified. In the primary‐exposed sites, the residues on the shadow interfaces are replaced by more hydrophobic or aromatic residues, which are physicochemically favored at protein–protein interfaces. In the primary‐buried sites, the residues on the shadow interfaces are replaced by larger residues that protrude into other proteins. These simple rules are satisfied in 23 out of 25 Structural Classification of Proteins (SCOP) families with a different‐oligomeric‐state pair, and thus represent a basic strategy for modulating protein associations and dissociations. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Hu M  Li Y  Yang G  Li G  Li M  Wen Z 《Amino acids》2012,42(5):1773-1781
Internal motions and flexibility are essential for biological functions in proteins. To assess the internal fluctuations and conformational flexibility of proteins, reliable computational methods are needed. In this study, wavelet transformation was used to filter out the noise and facilitate investigating the internal positional fluctuations of enzymes within nuclear magnetic resonance (NMR) structure ensembles. Moreover, potential active sites were identified by combining with positional fluctuation score, sequence conservation, and solvent accessible surface area. Among the total 107 catalytic residues in 44 examined enzymes, 69 residues were identified correctly. Our results suggest that wavelet transform analysis of structure ensemble is applicable to extract essential fluctuation information of proteins; furthermore, analysis of positional fluctuations is helpful for the identification of catalytic residues.  相似文献   

12.
Catalytic loop motions facilitate substrate recognition and binding in many enzymes. While these motions appear to be highly flexible, their functional significance suggests that structure-encoded preferences may play a role in selecting particular mechanisms of motions. We performed an extensive study on a set of enzymes to assess whether the collective/global dynamics, as predicted by elastic network models (ENMs), facilitates or even defines the local motions undergone by functional loops. Our dataset includes a total of 117 crystal structures for ten enzymes of different sizes and oligomerization states. Each enzyme contains a specific functional/catalytic loop (10–21 residues long) that closes over the active site during catalysis. Principal component analysis (PCA) of the available crystal structures (including apo and ligand-bound forms) for each enzyme revealed the dominant conformational changes taking place in these loops upon substrate binding. These experimentally observed loop reconfigurations are shown to be predominantly driven by energetically favored modes of motion intrinsically accessible to the enzyme in the absence of its substrate. The analysis suggests that robust global modes cooperatively defined by the overall enzyme architecture also entail local components that assist in suitable opening/closure of the catalytic loop over the active site.  相似文献   

13.
Rajan S  Chandrashekar R  Aziz A  Abraham EC 《Biochemistry》2006,45(51):15684-15691
To gain insight into the mechanism by which Arg-163 influences oligomerization of alphaA-crystallin, we prepared a series of truncated alphaA-crystallins with or without mutation of the Arg-163 residue. Expression of the proteins was achieved in Escherichia coli BL21 (DE3) pLysS cells, and alphaA-crystallin was purified by size-exclusion chromatography. Molecular mass was determined by molecular sieve HPLC, chaperone activity was assayed with alcohol dehydrogenase as the target protein, and structural changes were ascertained by circular dichroism (CD) measurements. With an increasing number of residues deleted, there was about a 3% decrease in oligomeric size per residue, until 10 residues were deleted. When 11 residues, including Arg-163, were deleted, the oligomeric size decreased 85%. Mutation of Arg-163 to Gly (R163G) did not affect the molecular mass in the full-length alphaA-crystallin. However, R163G mutants of all the truncated alphaA-crystallins showed a decrease in oligomeric size, those lacking 8, 9, and 10 residues showing 60-80% decrease and those lacking 5, 6, and 7 residues showing only a 7-14% decrease as compared to the corresponding truncated alphaA-crystallin. These data suggest that R163, E164, E165, and K166 in the REEK motif are also relevant to alphaA-crystallin oligomerization. The molecular masses of alphaA1-163 and alphaA1-163 (R163K) were nearly the same, which suggests that the role of Arg-163 is to provide a positive charge for intersubunit electrostatic interactions in the C-terminal domain. In alphaA1-162 (S162R), recovery of the molecular mass to the level in alphaA1-163 has not occurred; this shows that the actual position of R163 is important.  相似文献   

14.
HIV-1 Vif is an accessory protein that induces the proteasomal degradation of the host restriction factor, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G). The N-terminal half of Vif binds to APOBEC3G, and the C-terminal half binds to subunits of a cullin 5-based ubiquitin ligase. This Vif-directed ubiquitin ligase induces the degradation of APOBEC3G (a cytidine deaminase) and thereby protects the viral genome from mutation. A conserved PPLP motif near the C-terminus of Vif is essential for Vif function and is also involved in Vif oligomerization. However, the mechanism and functional significance of Vif oligomerization is unclear. We employed analytical ultracentrifugation to examine the oligomeric properties of Vif in solution. Contrary to previous reports, we find that Vif oligomerization does not require the conserved PPLP motif. Instead, our data suggest a more complex mechanism involving interactions among the HCCH motif, the BC box, and downstream residues in Vif. Mutation of residues near the PPLP motif (S165 and V166) affected the oligomeric properties of Vif and weakened the ability of Vif to bind and induce the degradation of APOBEC3G. We propose that Vif oligomerization may represent a mechanism for regulating interactions with APOBEC3G.  相似文献   

15.
It is now widely accepted that protein function depends not only on structure, but also on flexibility. However, the way mechanical properties contribute to catalytic mechanisms remains unclear. Here, we propose a method for investigating local flexibility within protein structures that combines a reduced protein representation with Brownian dynamics simulations. An analysis of residue fluctuations during the dynamics simulation yields a rigidity profile for the protein made up of force constants describing the ease of displacing each residue with respect to the rest of the structure. This approach has been applied to the analysis of a set of hemoproteins, one of the functionally most diverse protein families. Six proteins containing one or two heme groups have been studied, paying particular attention to the mechanical properties of the active-site residues. The calculated rigidity profiles show that active site residues are generally associated with high force constants and thus rigidly held in place. This observation also holds for diheme proteins if their mechanical properties are analyzed domain by domain. We note, however, that residues other than those in the active site can also have high force constants, as in the case of residues belonging to the folding nucleus of c-type hemoproteins.  相似文献   

16.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

17.
We introduce a computational method to predict and annotate the catalytic residues of a protein using only its sequence information, so that we describe both the residues' sequence locations (prediction) and their specific biochemical roles in the catalyzed reaction (annotation). While knowing the chemistry of an enzyme's catalytic residues is essential to understanding its function, the challenges of prediction and annotation have remained difficult, especially when only the enzyme's sequence and no homologous structures are available. Our sequence-based approach follows the guiding principle that catalytic residues performing the same biochemical function should have similar chemical environments; it detects specific conservation patterns near in sequence to known catalytic residues and accordingly constrains what combination of amino acids can be present near a predicted catalytic residue. We associate with each catalytic residue a short sequence profile and define a Kullback-Leibler (KL) distance measure between these profiles, which, as we show, effectively captures even subtle biochemical variations. We apply the method to the class of glycohydrolase enzymes. This class includes proteins from 96 families with very different sequences and folds, many of which perform important functions. In a cross-validation test, our approach correctly predicts the location of the enzymes' catalytic residues with a sensitivity of 80% at a specificity of 99.4%, and in a separate cross-validation we also correctly annotate the biochemical role of 80% of the catalytic residues. Our results compare favorably to existing methods. Moreover, our method is more broadly applicable because it relies on sequence and not structure information; it may, furthermore, be used in conjunction with structure-based methods.  相似文献   

18.
Oligomerization can endow proteins with novel structural and catalytic properties. The native dimer of bovine seminal ribonucleases (BS-RNase) binds, melts and catalyses the hydrolysis of double-stranded ribonucleic acids 30-fold better than its pancreatic homologue, the monomeric RNase A. Chemically induced oligomers of pancreatic RNase A are also found to show an increase in enzyme activity on double-stranded poly(A).poly(U) (Libonati, M. Bertoldi, M. and Sorrentino, S. (1996) Biochem. J. 318, 287-290) and, therefore, can be considered as potential immunosuppressive and cytotoxic agents. We report here a study on the relationship between surface histidine topography in oligomeric forms of these ribonucleases and their catalytic properties. Subtle changes in structure conformation of both BS-RNase and oligomeric RNase A are shown to result in a modification of the affinity of these proteins toward the immobilized transition-metal chelate, IDA-Cu(II). Because, such conformational change has been shown to correlate with an improvement of the newly acquired biological activities upon oligomerization, we can conclude that surface histidines topography constitutes an exquisite probe for the study of protein structure/function relationship.  相似文献   

19.
Cadherins are calcium-dependent cell surface proteins that mediate homophilic cellular adhesion. The calcium-induced oligomerization of the N-terminal two domains of epithelial cadherin (ECAD12) was followed by NMR spectroscopy in solution over a large range of protein (10 microM-5 mM) and calcium (0-5 mM) concentrations. Several spectrally distinct states could be distinguished that correspond to a calcium-free monomeric form, a calcium-bound monomeric form, and to calcium-bound higher oligomeric forms. Chemical shift changes between these different states define calcium-binding residues as well as oligomerization contacts. Information about the relative orientation and mobility of the ECAD12 domains in the various states was obtained from weak alignment and 15N relaxation experiments. The data indicate that the calcium-free ECAD12 monomer adopts a flexible, kinked conformation that occludes the dimer interface observed in the ECAD12 crystal structure. In contrast, the calcium-bound monomer is already in a straight, non-flexible conformation where this interface is accessible. This mechanism provides a rational for the calcium-induced adhesiveness. Oligomerization induces chemical shift changes in an area of domain CAD1 that is centered at residue Trp-2. These shift changes extend to almost the entire surface of domain CAD1 at high (5 mM) protein concentrations. Smaller additional clusters of shift perturbations are observed around residue A80 in CAD1 and K160 in CAD2. According to weak alignment and relaxation data, the symmetry of a predominantly dimeric solution aggregate at 0.6 mM ECAD12 differs from the approximate C2-symmetry of the crystalline dimer.  相似文献   

20.
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号