首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our recent gene expression profiling analyses demonstrated that Wnt2 is highly expressed in Flk1(+) cells, which serve as common progenitors of endothelial cells, blood cells, and mural cells. In this report, we characterize the role of Wnt2 in mesoderm development during embryonic stem (ES) cell differentiation by creating ES cell lines in which Wnt2 was deleted. Wnt2(-/-) embryoid bodies (EBs) generated increased numbers of Flk1(+) cells and blast colony-forming cells compared with wild-type EBs, and had higher Flk1 expression at comparable stages of differentiation. Although Flk1(+) cells were increased, we found that endothelial cell and terminal cardiomyocyte differentiation was impaired, but hematopoietic cell differentiation was enhanced and smooth muscle cell differentiation was unchanged in Wnt2(-/-) EBs. Later stage Wnt2(-/-) EBs had either lower or undetectable expression of endothelial and cardiac genes compared with wild-type EBs. Consistently, vascular plexi were poorly formed and neither beating cardiomyocytes nor alpha-actinin-staining cells were detectable in later stage Wnt2(-/-) EBs. In contrast, hematopoietic cell gene expression was upregulated, and the number of hematopoietic progenitor colonies was significantly enhanced in Wnt2(-/-) EBs. Our data indicate that Wnt2 functions at multiple stages of development during ES cell differentiation and during the commitment and diversification of mesoderm: as a negative regulator for hemangioblast differentiation and hematopoiesis but alternatively as a positive regulator for endothelial and terminal cardiomyocyte differentiation.  相似文献   

2.
3.
In gastrulating embryos, various types of cells are generated before differentiation into specific lineages. The mesoderm of the gastrulating mouse embryo represents a group of such intermediate cells. PDGF receptor alpha (PDGFRα), c-Kit and fetal liver kinase 1 (Flk1) are expressed in distinctive mesodermal derivatives of post-gastrulation embryos. Their expressions during gastrulation were examined by whole mount immunostaining with monoclonal antibodies against these three receptors. The antibodies stained different mesodermal subsets in gastrulating embryos. Flow cytometry of head fold stage embryos revealed that Flk1+ mesodermal cells could be further classified by the level of c-Kit expression. To examine the possibility that hematopoietic cell differentiation is initiated from the Flk1+ mesoderm, embryonic stem (ES) cells were cultured on the OP9 or PA6 stromal cell layer; the former but not the latter supported in vitro hematopoiesis from ES cells. Flk1+ cells were detected only on the OP9 cell layer from day 3 of differentiation before the appearance of hematopoietic cells. Thus, Flk1+ cells will be required for in vitro ES cell differentiation into hematopoietic cells. The results suggest that these three receptor tyrosine kinases will be useful for defining and sorting subsets of mesodermal cells from embryos or in vitro cultured ES cells.  相似文献   

4.
Embryonic stem (ES) cells are an invaluable model for identifying subtle phenotypes as well as severe outcomes of perturbing gene function that may otherwise result in lethality. However,though ES cells of different origins are regarded as equally pluripotent,their in vitro differentiation potential varies, suggesting that their response to developmental signals is different. The R1 cell line is widely used for gene manipulation due to its good growth characteristics and highly efficient germline transmission. Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt- and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently used theme, resulting in context-dependent outcomes during development. Perturbing these pathways can result in severe and possibly lethal developmental phenotypes often due to primary cardiovascular defects. We report that during early spontaneous differentiation of R1 cells, Notch-1 and the Wnt target Brachyury are active whereas the Shh receptor is not detected. This expression pattern is similar to that seen in a mouse endothelial cell line. This temporal study of expression of genes representative of all three pathways in ES cell differentiation will aid in further analysis of cell signalling during vascular development.  相似文献   

5.
Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage   总被引:1,自引:0,他引:1  
Flk1 is one of the specific cell surface receptors for vascular endothelial growth factor and one of the most specific markers highlighting the earliest stage of hematopoietic and vascular lineages. However, recent new evidence suggests that these Flk1(+) mesodermal progenitor cells also contribute to muscle lineages. All evidence is based on the experiments using in vitro differentiation and in vivo transplantation systems. Although this approach revealed a differentiation potential range of Flk1(+) cells that is wider than previously expected, it fails to determine whether Flk1(+) cells contribute to muscle lineage as part of the normal developmental process. To obtain direct evidence for the fate of Flk1(+) cells in development, we used a knock-in mouse line where Cre is expressed in Flk1(+) cells. Studies with these Cre lines provide direct evidence that Flk1(+) cells are progenitors for muscles, in addition to hematopoietic and vascular endothelial cells.  相似文献   

6.
7.
Embryonic stem (ES) cells are an invaluable model for identifying subtle phenotypes as well as severe outcomes of perturbing gene function that may otherwise result in lethality. However, though ES cells of different origins are regarded as equally pluripotent, their in vitro differentiation potential varies, suggesting that their response to developmental signals is different. The R1 cell line is widely used for gene manipulation due to its good growth characteristics and highly efficient germline transmission. Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently used theme, resulting in context-dependent outcomes during development. Perturbing these pathways can result in severe and possibly lethal developmental phenotypes often due to primary cardiovascular defects. We report that during early spontaneous differentiation of R1 cells, Notch-1 and the Wnt target Brachyury are active whereas the Shh receptor is not detected. This expression pattern is similar to that seen in a mouse endothelial cell line. This temporal study of expression of genes representative of all three pathways in ES cell differentiation will aid in further analysis of cell signalling during vascular development.  相似文献   

8.
血管内皮细胞发育及分子机制   总被引:1,自引:0,他引:1  
王旭  熊敬维 《遗传》2012,34(9):1114-1122
心血管系统是胚胎发育中最先形成的器官之一, 为机体提供营养成分和氧气。血管发育包括两部分, 一是内皮祖细胞(Angioblast)聚集形成血管原基(Vasculogenesis), 二是从已有血管形成新的血管分支(Angiogenesis)。此后由初级内皮细胞管召集平滑肌细胞形成功能性血管(Vessel maturation)。内皮祖细胞起源途径包括:由Flk1阳性中胚层细胞到成血成血管细胞(Hemangioblast)到血管内皮祖细胞; 或由Flk1阳性中胚层细胞直接到血管内皮祖细胞。Flk1阳性中胚层细胞受到vegf、flk1、cloche、lycat、etsrp等关键基因或信号通路的调节, 其中核心问题是原肠期中胚层如何形成Flk1阳性中胚层细胞及进一步分化成血管内皮祖细胞和成血血管细胞。文章集中评述内皮祖细胞发育、分化及其分子遗传调控机制, 并展望本领域未来发展方向。  相似文献   

9.
Vertebrate heart development requires specification of cardiac precursor cells, migration of cardiac progenitors as well as coordinated cell movements during looping and septation. DM-GRASP/ALCAM/CD166 is a member of the neuronal immunoglobulin domain superfamily of cell adhesion molecules and was recently suggested to be a target gene of non-canonical Wnt signalling. Loss of DM-GRASP function did not affect specification of cardiac progenitor cells. Later during development, expression of cardiac marker genes in the first heart field of Xenopus laevis such as Tbx20 and TnIc was reduced, whereas expression of the second heart field marker genes Isl-1 and BMP-4 was unaffected. Furthermore, loss of DM-GRASP function resulted in defective cell adhesion and cardiac morphogenesis. Additionally, expression of DM-GRASP can rescue the phenotype that results from the loss of non-canonical Wnt11-R signalling suggesting that DM-GRASP and non-canonical Wnt signalling are functionally coupled during cardiac development.  相似文献   

10.
胚胎的早期发育是在低氧条件下进行的,低氧环境在胚胎血管发生及造血发育中起着重要作用,低氧条件能促进胚胎干细胞在体外向内皮细胞和造血细胞的分化,但低氧条件对造血细胞产生的具体作用及相应机制尚不清楚.本研究利用人Es细胞向造血祖细胞定向分化体系,发现低氧环境可以促进CD31+TIE2+造血内皮祖细胞的产生,2天后造血内皮祖细胞开始表达终生造血基因.进一步研究发现,低氧能够上调Wnt5a的表达,干涉Wnt5a能够抑制低氧环境对生血内皮细胞分化的促进作用.在正常氧环境下加入Wnt5a产生促进生血内皮细胞分化的效应,该效应与低氧处理促进生血内皮细胞产生的作用相似.本研究首次证明了低氧通过上调Wnt5a的表达促进人Es细胞向生血内皮细胞的分化,为ES细胞向生血内皮细胞的分化及造血祖细胞分化的研究提供了新的线索.  相似文献   

11.
胚胎干细胞向造血细胞分化研究   总被引:2,自引:0,他引:2  
刘革修  张洹 《生命科学》2003,15(1):21-25
胚胎干(embryonic stem,ES)细胞是来源于囊胚的内细胞团(inner cell mass,ICM),具有发育的全能性或多能性,能嵌合到早期胚胎,在体内可以参与各种组织发育甚至包括生殖细胞;在体外分化培养条件下,可以顺序分化出各种组织细胞,与体内完整胚胎发育过程相符合,而且可以通过调节ES细胞某些基因的表达而调节其分化。因此,ES细胞是研究哺乳动物早期胚胎发育、细胞分化及其关键基因鉴定的理想模型。另外,胚胎生殖脊(embryonic germ,EG)细胞系也具有同样的生物学特性,它是由早期胚胎的原始生殖脊(primordial germ,PG)细胞建株而来。最近研究显示:ES细胞在体外不但可以分化为所有造血细胞系,而且还可以分化为具有长期增殖能力的造血干细胞。作者就胚胎干细胞向造血细胞和造血干细胞分化及其诱导因子和调控基因的表达作一综述。  相似文献   

12.
Embryonic stem (ES) cells have the potential to differentiate into various progenitor cells. Here we investigated the capacity of mouse ES cells to differentiate into renal tubular cells both in vitro and in vivo. After stably transfecting Wnt4 cDNA to mouse ES cells (Wnt4-ES cells), undifferentiated ES cells were incubated by the hanging drop culture method to induce differentiation to embryoid bodies (EBs). During culturing of the EBs derived from the Wnt4-ES cells, aquaporin-2 (AQP2) mRNA and protein were expressed within 15-20 days. The expression of AQP2 in Wnt4-EBs was enhanced in the presence of hepatocyte growth factor (HGF) and activin A. We next performed in vivo experiments by transplanting the Wnt4-EBs into the mouse renal cortex. Four weeks after transplantation, some portions of the EB-derived cells expressing AQP2 in the kidney assembled into tubular-like formations. In conclusion, our in vitro and in vivo experiments revealed two new findings: first, that cultured Wnt4-EBs have an ability to differentiate into renal tubular cells; and second, that Wnt4, HGF, and activin A may promote the differentiation of ES cells to renal tubular cells.  相似文献   

13.
Cultured mouse D3 embryonic stem (ES) cells differentiating into embryoid bodies (EBs) expressed several Wnt isoforms, nearly all isotypes of the Wnt receptor Frizzled and the Wnt/Dickkopf (Dkk) co-receptor low-density lipoprotein receptor-related protein (LRP) type 5. A 4-day treatment with retinoic acid (RA), which promoted neural differentiation of EBs, substantially increased the expression of the Wnt antagonist Dkk-1, and induced the synthesis of the Wnt/Dkk-1 co-receptor LRP6. Recombinant Dkk-1 applied to EBs behaved like RA in inducing the expression of the neural markers nestin and distal-less homeobox gene (Dlx-2). Recombinant Dkk-1 was able to inhibit the Wnt pathway, as shown by a reduction in nuclear beta-catenin levels. Remarkably, the antisense- or small interfering RNA-induced knockdown of Dkk-1 largely reduced the expression of Dlx-2, and the neuronal marker beta-III tubulin in EBs exposed to RA. These data suggest that induction of Dkk-1 and the ensuing inhibition of the canonical Wnt pathway is required for neural differentiation of ES cells.  相似文献   

14.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

15.
16.
《遗传学报》2020,47(5):249-261
Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells.A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs.Therefore,to achieve a transplantable organ in animals without rejection,creation of vascular endothelial cells derived from humans within the organ is necessary.In this study,to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals,we generated rat-mouse chimeras by injection of rat embryonic stem cells(rESCs) into mouse blastocysts with deficiency of Flk-1 protein,which is associated with endothelial and hematopoietic cell development.We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras.The whole yolk sac(YS) of Flk-1~(EGFP/ECFP) rat-mouse chimera was full of rat blood vasculature.Rat genes related to vascular endothelial cells,arteries,and veins,blood vessels formation process,as well as hematopoietic cells,were highly expressed in the YS.Our results suggested that rat vascular endothelial cells could undergo proliferation,migration,and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells,T cells,and myeloid cells in rat-mouse chimeras,which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.  相似文献   

17.

Background

Wnt signals are important for embryonic stem cells renewal, growth and differentiation. Although 19 Wnt, 10 Frizzled genes have been identified in mammals, their expression patterns in stem cells were largely unknown.

Results

We conducted RNA expression profiling for the Wnt ligands, their cellular receptors "Frizzleds" and co-receptors LRP5/6 in human embryonic stem cells (H7), human bone marrow mesenchymal cells, as well as mouse totipotent F9 teratocarcinoma embryonal cells. Except failing to express Wnt2 gene, totipotent F9 cells expressed RNA for all other 18 Wnt genes as well as all 10 members of Frizzled gene family. H7 cells expressed RNA for each of the 19 Wnt genes. In contrast, human mesenchymal cells did not display detectable RNA expression of Wnt1, Wnt8a, Wnt8b, Wnt9b, Wnt10a, and Wnt11. Analysis of Frizzled RNAs in H7 and human mesechymal cells revealed expression of 9 members of the receptor gene family, except Frizzled8. Expression of the Frizzled co-receptor LRP5 and LRP6 genes were detected in all three cell lines. Human H7 and mouse F9 cells express nearly a full complement of both Wnts and Frizzleds genes. The human mesenchymal cells, in contrast, have lost the expression of six Wnt ligands, i.e. Wnt1, 8a, 8b, 9b, 10a and 11.

Conclusion

Puripotent human H7 and mouse F9 embryonal cells express the genes for most of the Wnts and Frizzleds. In contrast, multipotent human mesenchymal cells are deficient in expression of Frizzled-8 and of 6 Wnt genes.  相似文献   

18.
19.
Migration of neural crest cells is an elaborate process that requires the delamination of cells from an epithelium and cell movement into an extracellular matrix. In this work, it is shown for the first time that the non-canonical Wnt signalling [planar cell polarity (PCP) or Wnt-Ca2+] pathway controls migration of neural crest cells. By using specific Dsh mutants, we show that the canonical Wnt signalling pathway is needed for neural crest induction, while the non-canonical Wnt pathway is required for neural crest migration. Grafts of neural crest tissue expressing non-canonical Dsh mutants, as well as neural crest cultured in vitro, indicate that the PCP pathway works in a cell-autonomous manner to control neural crest migration. Expression analysis of non-canonical Wnt ligands and their putative receptors show that Wnt11 is expressed in tissue adjacent to neural crest cells expressing the Wnt receptor Frizzled7 (Fz7). Furthermore, loss- and gain-of-function experiments reveal that Wnt11 plays an essential role in neural crest migration. Inhibition of neural crest migration by blocking Wnt11 activity can be rescued by intracellular activation of the non-canonical Wnt pathway. When Wnt11 is expressed opposite its normal site of expression, neural crest migration is blocked. Finally, time-lapse analysis of cell movement and cell protrusion in neural crest cultured in vitro shows that the PCP or Wnt-Ca2+ pathway directs the formation of lamellipodia and filopodia in the neural crest cells that are required for their delamination and/or migration.  相似文献   

20.
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号