首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

2.
3.

Background  

Codon usage bias (CUB), the uneven use of synonymous codons, is a ubiquitous observation in virtually all organisms examined. The pattern of codon usage is generally similar among closely related species, but differs significantly among distantly related organisms, e.g., bacteria, yeast, and Drosophila. Several explanations for CUB have been offered and some have been supported by observations and experiments, although a thorough understanding of the evolutionary forces (random drift, mutation bias, and selection) and their relative importance remains to be determined. The recently available complete genome DNA sequences of twelve phylogenetically defined species of Drosophila offer a hitherto unprecedented opportunity to examine these problems. We report here the patterns of codon usage in the twelve species and offer insights on possible evolutionary forces involved.  相似文献   

4.

Background

Equine infectious anemia virus (EIAV) is an important animal model for understanding the relationship between viral persistence and the host immune response during lentiviral infections. Comparison and analysis of the codon usage model between EIAV and its hosts is important for the comprehension of viral evolution. In our study, the codon usage pattern of EIAV was analyzed from the available 29 full-length EIAV genomes through multivariate statistical methods.

Finding

Effective number of codons (ENC) suggests that the codon usage among EIAV strains is slightly biased. The ENC-plot analysis demonstrates that mutation pressure plays a substantial role in the codon usage pattern of EIAV, whereas other factors such as geographic distribution and host translation selection also take part in the process of EIAV evolution. Comparative analysis of codon adaptation index (CAI) values among EIAV and its hosts suggests that EIAV utilize the translational resources of horse more efficiently than that of donkey.

Conclusion

The codon usage bias in EIAV is slight and mutation pressure is the main factor that affects codon usage variation in EIAV. These results suggest that EIAV genomic biases are the result of the co-evolution of genome composition and the ability to evade the host’s immune response.
  相似文献   

5.

Background

The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.

Results

A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).

Conclusions

The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background  

Evolution of synonymous codon usage is thought to be determined by a balance between mutation, genetic drift and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes.  相似文献   

7.
8.
该研究以2株野生沙枣(Elaeagnus angustifolia Linn.)嫩枝经温室水培后的嫩叶为材料,采用CTAB法分别提取总DNA,并利用第二代测序技术进行总DNA从头测序,组装后得到2株沙枣叶绿体基因组全序列,并详细分析了其蛋白质编码基因密码子使用的偏好性及其原因,为沙枣叶绿体基因工程和分子系统进化等研究奠定基础。结果显示:(1)组装得到沙枣叶绿体基因组序列全长150 546 bp,由长度为81 113 bp的长单拷贝(LSC)区域和25 494 bp的短单拷贝(SSC)区域,以及1对分隔开它们的长18 445 bp的反向重复序列(IRS)组成;注释共得到132个基因,包括86个蛋白编码基因、38个tRNA基因和8个rRNA基因。(2)沙枣叶绿体基因组蛋白编码基因密码子的第三位碱基GC含量(GC_3)为28.47%,明显低于整个叶绿体基因组GC含量(37%),也低于第一位(GC_1)和第二位(GC_2)碱基的GC含量,说明密码子对AT碱基结尾有偏好性;其中, UCU、CCU、UGU、GCU、CUU、GAU、UCA和UAA为最优密码子。(3)同义密码子相对使用频率(RSCU)分析发现,影响密码子使用模式的因素并不单一,密码子的偏好性受到突变、选择及其他因素的共同影响,并且自然选择表达引起的序列差异比突变对密码子偏好性的影响要显著;中性绘图分析、有效密码子数(ENC-plot)分析和奇偶偏好性(PR2-plot)分析表明,沙枣叶绿体基因组使用密码子的偏性受选择的影响更大。(4)通过最大似然法、最大简约法和贝叶斯方法对胡颓子科6个物种和1个枣的叶绿体基因序列构建系统发育树,与它们使用密码子偏性聚类的结果一致,表明叶绿体基因组使用密码子偏性与物种的亲缘关系相关。  相似文献   

9.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

10.
Yu H  Li Q 《PloS one》2011,6(1):e16147

Background

Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis.

Principal Findings

In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family.

Conclusions/Significance

These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.  相似文献   

11.

Background  

In many bacteria, intragenomic diversity in synonymous codon usage among genes has been reported. However, no quantitative attempt has been made to compare the diversity levels among different genomes. Here, we introduce a mean dissimilarity-based index (Dmean) for quantifying the level of diversity in synonymous codon usage among all genes within a genome.  相似文献   

12.
Codon usage patterns and phylogenetic relationships in the actin multigene family have been analyzed for three dipteran species—Drosophila melanogaster, Bactrocera dorsalis, and Ceratitis capitata. In certain phylogenetic tree reconstructions, using synonymous distances, some gene relationships are altered due to a homogenization phenomenon. We present evidence to show that this homogenization phenomenon is due to codon usage bias. A survey of the pattern of synonymous codon preferences for I I actin genes from these three species reveals that five out of the six Drosophila actin genes show high degrees of codon bias as indicated by scaled 2 values. In contrast to this, four out of the five actin genes from the other species have low codon bias values. A Monte Carlo contingency test indicates that for those Drosophila actin genes which exhibit codon bias, the patterns of codon usage are different compared to actin genes from the other species. In addition, the genes exhibiting codon bias also appear to have reduced rates of synonymous substitution. The homogenization phenomenon seen in terms of synonymous substitutions is not observed for nonsynonymous changes. Because of this homogenization phenomenon, trees constructed based on synonymous substitutions will be affected. These effects can be overt in the case of multigene families, but similar distortions may underlie reconstructions based on single-copy genes which exhibit codon usage bias.Correspondence to: M. He  相似文献   

13.
In this study, major factors shaping codon and amino acid usage variation Lactobacillus sakei 23K were investigated. It included 13 other Lactobacillus species for a comparative analysis. The correspondence analysis (COA) showed that in 13 species the major trend of synonymous codon usage was highly correlated with gene expression level as assessed by the “Codon Adaptation Index” (CAI) values. In addition, Nc (effective number of codons) plot, SCUO (synonymous codon usage order) plot and correlation analyses showed that the base composition and mutational bias have dominant role in the codon usage variation. However, the translational selection for genes at higher expression level, where more frequent synonymous codons correspond to more abundant cognate transfer RNAs (tRNAs), was not found to be similar in all species. The study also showed that the amino acid usage in these species was significantly (P < 0.01) influenced by hydrophobicity and aromaticity of proteins. Furthermore, 24 codons that were found to be optimally used by L. sakei and its comparative study with 13 Lactobacillus species might provide some useful information in their further study of molecular evolution and genetic engineering.  相似文献   

14.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

15.

Background  

Codon usage may vary significantly between different organisms and between genes within the same organism. Several evolutionary processes have been postulated to be the predominant determinants of codon usage: selection, mutation, and genetic drift. However, the relative contribution of each of these factors in different species remains debatable. The availability of complete genomes for tens of multicellular organisms provides an opportunity to inspect the relationship between codon usage and the evolutionary age of genes.  相似文献   

16.

Background

Codon adaptation indices (CAIs) represent an evolutionary strategy to modulate gene expression and have widely been used to predict potentially highly expressed genes within microbial genomes. Here, we evaluate and compare two very different methods for estimating CAI values, one corresponding to translational codon usage bias and the second obtained mathematically by searching for the most dominant codon bias.

Results

The level of correlation between these two CAI methods is a simple and intuitive measure of the degree of translational bias in an organism, and from this we confirm that fast replicating bacteria are more likely to have a dominant translational codon usage bias than are slow replicating bacteria, and that this translational codon usage bias may be used for prediction of highly expressed genes. By analyzing more than 300 bacterial genomes, as well as five fungal genomes, we show that codon usage preference provides an environmental signature by which it is possible to group bacteria according to their lifestyle, for instance soil bacteria and soil symbionts, spore formers, enteric bacteria, aquatic bacteria, and intercellular and extracellular pathogens.

Conclusion

The results and the approach described here may be used to acquire new knowledge regarding species lifestyle and to elucidate relationships between organisms that are far apart evolutionarily.  相似文献   

17.

Background

Although mitochondrial (mt) gene order is highly conserved among vertebrates, widespread gene rearrangements occur in anurans, especially in neobatrachians. Protein coding genes in the mitogenome experience adaptive or purifying selection, yet the role that selection plays on genomic reorganization remains unclear. We sequence the mitogenomes of three species of Glandirana and hot spots of gene rearrangements of 20 frog species to investigate the diversity of mitogenomic reorganization in the Neobatrachia. By combing these data with other mitogenomes in GenBank, we evaluate if selective pressures or functional constraints act on mitogenomic reorganization in the Neobatrachia. We also look for correlations between tRNA positions and codon usage.

Results

Gene organization in Glandirana was typical of neobatrachian mitogenomes except for the presence of pseudogene trnS (AGY). Surveyed ranids largely exhibited gene arrangements typical of neobatrachian mtDNA although some gene rearrangements occurred. The correlation between codon usage and tRNA positions in neobatrachians was weak, and did not increase after identifying recurrent rearrangements as revealed by basal neobatrachians. Codon usage and tRNA positions were not significantly correlated when considering tRNA gene duplications or losses. Change in number of tRNA gene copies, which was driven by genomic reorganization, did not influence codon usage bias. Nucleotide substitution rates and dN/dS ratios were higher in neobatrachian mitogenomes than in archaeobatrachians, but the rates of mitogenomic reorganization and mt nucleotide diversity were not significantly correlated.

Conclusions

No evidence suggests that adaptive selection drove the reorganization of neobatrachian mitogenomes. In contrast, protein-coding genes that function in metabolism showed evidence for purifying selection, and some functional constraints appear to act on the organization of rRNA and tRNA genes. As important nonadaptive forces, genetic drift and mutation pressure may drive the fixation and evolution of mitogenomic reorganizations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-691) contains supplementary material, which is available to authorized users.  相似文献   

18.
王艳  赵懿琛  赵德刚 《广西植物》2021,41(2):274-282
为了解杜仲基因密码子使用模式,该文以杜仲基因组密码子为研究对象,运用CodonW软件对杜仲的320个蛋白编码基因进行同义密码子相对使用频率(RSCU)分析、ENC-GC3s关联分析编码基因的密码子ENC值、PR2-plot偏倚分析编码基因的密码子碱基使用频率,并运用CUSP软件与Codon Usage Database软件对杜仲基因密码子的GC含量、使用频率与代表性物种烟草、拟南芥、大肠杆菌和酿酒酵母的密码子GC含量和使用频率进行比较。结果表明:杜仲基因密码子的RSCU>1的密码子有30个,其中18个以G/C结尾、12个以A/U结尾,说明杜仲基因密码子偏好以G/C结尾,且偏好性较强;有效密码子数(ENC)范围为30~60,该范围内的密码子距离标准曲线较远,其ENC值小,偏好性较强;PR2-plot偏倚分析碱基使用频率显示,G>C、U>A;杜仲与代表性物种的GC含量分析显示,杜仲的GC12、GC3以及平均GC含量均高于代表性物种;杜仲与代表性物种的密码子使用频率分析显示,杜仲与烟草、酿酒酵母的密码子偏好较为接近,杜仲与拟南芥、大肠杆菌的密码子偏好差距较大。杜仲是我国特有的珍贵中药材,对其进行密码子使用模式分析,并研究其密码子偏好规律,为杜仲植物基因工程中外源基因的改良及表达提供了理论基础。  相似文献   

19.

Background  

The expression of heterologous proteins in Escherichia coli is strongly affected by codon bias. This phenomenon occurs when the codon usage of the mRNA coding for the foreign protein differs from that of the bacterium. The ribosome pauses upon encountering a rare codon and may detach from the mRNA, thereby the yield of protein expression is reduced. Several bacterial strains have been engineered to overcome this effect. However, the increased rate of translation may lead to protein misfolding and insolubilization. In order to prove this assumption, the solubility of several recombinant proteins from plants was studied in a codon bias-adjusted E. coli strain.  相似文献   

20.

Background  

Codon usage bias has been widely reported to correlate with GC composition. However, the quantitative relationship between codon usage bias and GC composition across species has not been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号