首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Avis PG  Charvat I 《Mycologia》2005,97(2):329-337
The inoculum of ectomycorrhizal (EM) fungi was examined in a 16 y long nitrogen fertilization experiment maintained in a temperate oak savanna. To measure EM fungal inoculum, bur oak seedlings were grown in three types of bioassays: (i) intact soil cores that measure inoculum such as spores, mycelia and mycorrhizal roots; (ii) resistant propagule bioassays that measure inoculum types resistant to soil drying; and (iii) previously mycorrhizal root bioassays that measure the ability of EM fungi to colonize new roots from mycorrhizal roots. Colonization of bur oak seedlings was characterized by morphotyping and where necessary by restriction analysis and internal transcribed spacer (ITS) sequencing. Fourteen morphotypes were found in intact soil core bioassays with species of Cortinarius, Cenococcum and Russula abundant. Five morphotypes were found in resistant propagule bioassays with Cenococcum, a thelephoroid morphotype and a Wilcoxina-like ascomycete abundant and frequent. In intact soil core bioassays total percent root colonization and number of morphotypes were not affected by N supply in 2000 and 2001. However the composition of EM fungi colonizing oak seedling roots was different with increased N supply such that Russula spp. (primarily Russula aff. amoenolens) were most abundant at the highest level of N supply. Dominant Russula spp. did not colonize any roots in resistant propagule bioassays but did colonize oak seedling roots from previously mycorrhizal roots. Results suggest that in this savanna N supply can influence the kinds of inoculum propagules present and thereby might affect the dynamics of ectomycorrhizal communities by differentially influencing reproductive and colonization strategies.  相似文献   

2.
Question: Environmental limitations on carbon acquisition and use can impact successful establishment and restrict a species range, such as for trees at timberline. How do ecophysiological properties associated with carbon uptake and allocation change along an elevation gradient for adult compared to seedling conifers in a timberline ecotone? Location: Teton Range in the Rocky Mountains, Wyoming, USA Methods: Photochemical efficiency (Fv/Fm), specific leaf area (SLA) and foliar nonstructural carbohydrates (NSC) were compared along an elevation gradient (2200‐3050 m) among two age classes (seedling and adult) and species (Abies lasiocarpa and Pseudotsuga menziesii) at timberline during mid‐summer. Results: F v/Fm values were relatively high in both seedlings and adults across the elevation gradient, with the exception of a low Fv/Fm for seedlings in the site having the lowest soil temperatures. SLA was surprisingly constant within each age class and species across the timberline ecotone. Foliar NSCs did not increase or decrease consistently with elevation in either age class. Nonetheless, NSCs were highly variable among sites, but only in seedlings and not in adults. Conclusions: Elevation effects on these indicators of the efficiency of interception and use of sunlight in the timberline ecotone were minimal during the optimum period of the growing season. However, establishing seedlings had a tendency to exhibit greater responses to the timberline environment, particularly in their allocation of photosynthate to NSC, which may be a constraint to tree establishment at high elevations.  相似文献   

3.
We used the aqueous extract fromArtemisia campesttis ssp.caudata to investigate its effects on the colonization of sand dune grass roots by mycorrhizal fungi and seedling growth. The percent colonization decreased with higher extract concentrations, and growth of three grass species was inhibited. Colonization by mycorrhizal fungi was more sensitive to the extract than was seedling growth, and no significant differences in the latter were found between the mycorrhizal and non-mycorrhizal treatments.  相似文献   

4.
Bansal S  Germino MJ 《Oecologia》2008,158(2):217-227
Low rates of growth for conifers at high elevations may relate to problems in acquiring or utilizing carbon. A traditional hypothesis for growth limits of trees at alpine treeline is that low photosynthesis (A) leads to insufficient supply of carbon for growth. Alternatively, the sink-limitation hypothesis questions the importance of low A, and suggests that trees at treeline have abundant carbon for growth as a result of greater decreases in carbon use [respiration (R) and growth] than A at higher elevations. Concentrations of carbon intermediates (e.g., nonstructural carbohydrates, NSC) have been used to support the sink-limitation hypothesis, with the assumption that NSC reflects the ratio of carbon source to sinks. Our objective was to determine elevation effects on carbon balance (whole-plant uptake, storage, and efflux of carbon) of tree seedlings during their critical establishment phase at timberline. Changes in A and R (of whole crowns), NSC (starches and simple sugars), and growth were measured in seedlings of a treeline (Abies lasiocarpa) and nontreeline species (Pseudotsuga menziesii). Seedlings were outplanted at the lower (2,450 m) and upper (3,000 m) edges of the timberline zone in the Rocky Mountains, USA. At the upper compared with lower elevation, both species had 10-20% less root and needle growth, 13-15% less A, 35-39% less R, and up to 50% greater NSC. A. lasiocarpa allocated more biomass to needles and had greater A but less NSC than P. menziesii. The greater effects of elevation on R compared with A led to a 1.3-fold increase in A:R at the upper elevation, and a corresponding increase in starch (r2 = 0.42)-a pattern consistent with the predictions of the sink-limitation hypothesis. Nevertheless, A and dry mass gain were positively correlated (r2 = 0.42), indicating that variation in photosynthesis was related to growth of seedlings at timberline.  相似文献   

5.
Fire, which is the dominant disturbance in the boreal forest, creates substantial heterogeneity in soil burn severity at patch and landscape scales. We present results from five field experiments in Yukon Territory, Canada, and Alaska, USA that document the effects of soil burn severity on the germination and establishment of four common boreal trees: Picea glauca, Picea mariana, Pinus contorta subsp. latifolia, and Populus tremuloides. Burn severity had strong positive effects on seed germination and net seedling establishment after 3 years. Growth of transplanted seedlings was also significantly higher on severely burned soils. Our data and a synthesis of the literature indicated a consistent, steep decline in conifer establishment on organic soils at depths greater than 2.5 cm. A meta-analysis of seedling responses found no difference in the magnitude of severity effects on germination versus net establishment. There were, however, significant differences in establishment but not germination responses among deciduous trees, spruce, and pine, suggesting that small-seeded species experience greater mortality on lightly burned, organic soils than large-seeded species. Together, our analyses indicate that variations in burn severity can influence multiple aspects of forest stand structure, by affecting the density and composition of tree seedlings that establish after fire. These effects are predicted to be most important in moderately-drained forest stands, where a high potential variability in soil burn severity is coupled with strong severity effects on tree recruitment.  相似文献   

6.
In the alpine-treeline ecotone of the Snowy Range in Wyoming, USA, microsite sky exposure of Englemann spruce ( Picea englemannii ) and subalpine fir ( Abies lasiocarpa ) seedlings (< 5 years) was associated with the avoidance of low-nocturnal temperatures and high insolation, factors which appeared to result in low-temperature photoinhibition. In a field experiment, light-saturated photosynthesis ( A sat) in current-year seedlings (newly germinated) of fir increased significantly (approximately seven-fold) in response to increased long-wave irradiance at night (warming), solar shading (approximately five-fold), and the combination of the two treatments (approximately eight-fold). A sat in current-year spruce remained unchanged in response to all treatments, but was over four-times higher than fir in control plots. These results indicated substantial low-temperature photoinhibition, and were supported by similar A sat trends in natural seedlings. Increased needle inclination and clustering in more exposed microsites for both species implicates the possible role of structural adaptations for decreased sky exposure and warmer leaf temperatures at night.  相似文献   

7.
The importance of mycorrhizal network (MN)-mediated colonization under field conditions between trees and seedlings was investigated. We also determined the combined influences of inoculum source and distance from trees on the ectomycorrhizal (EM) community of seedlings. On six sites, we established trenched plots around 24 residual Pseudotsuga menziesii var. glauca trees and then planted seedlings at four distances (0.5, 1.0, 2.5, and 5.0 m) from the tree into four mesh treatments that served to restrict inoculum access (i.e., planted into mesh bags with 0.5, 35, 250 μm pores or directly into soil). Ectomycorrhizal communities were identified after two growing seasons using morphological and molecular techniques. Mesh treatments had no effect on seedling mycorrhizal colonization, richness, or diversity, suggesting that MN-mediated colonization, was not an essential mechanism by which EM communities were perpetuated to seedlings. Instead, wind-borne and soil inoculum played an important role in seedling colonization. The potential for MNs to form in these forests was not dismissed, however, because trees and seedlings shared 83 % of the abundant EM. Seedlings furthest from trees had a simpler EM community composition and reduced EM richness and diversity compared to seedlings in closer proximity.  相似文献   

8.
Izzo A  Nguyen DT  Bruns TD 《Mycologia》2006,98(3):374-383
In this study we analyzed the spatial structure of ectomycorrhizal fungi present in the soils as resistant propagules (e.g. spores or sclerotia) in a mixed-conifer forest in the Sierra Nevada, California. Soils were collected under old-growth Abies spp. stands across approximately 1 km and bioassayed with seedlings of hosts that establish best in stronger light (Pinus jeffreyi) or that are shade-tolerant (Abies concolor). Ectomycorrhizal fungi colonizing the roots were characterized with molecular techniques (ITSRFLP and DNA sequence analysis). Wilcoxina, five Rhizopogon species and Cenococcum were the most frequent of 17 detected species. No spatial structure was detected in the resistant propagule community as a whole, but P. jeffreyi seedlings had higher species richness and associated with seven Rhizopogon species that were not detected on A. concolor seedlings. We drew two conclusions from comparisons between this study and a prior study of the ectomycorrhizal community on mature trees in the same forest: (i) the resistant propagule community was considerably simpler and more homogeneous than the active resident community across the forest and (ii) Cenococcum and Wilcoxina species are abundant in both communities.  相似文献   

9.
【背景】西南桦是兼具内生、外生菌根的典型菌根营养型树种,菌根化育苗是其壮苗培育的有效措施。【目的】揭示外生菌根真菌对西南桦无性系幼苗生长和养分含量的影响,为其菌根化育苗筛选优良外生菌根真菌提供科学依据。【方法】以BY1、FB4、FB4+和A5等4个西南桦优良无性系为研究对象,选用土生空团菌(Cenococcumgeophilum)、松乳菇(Lactariusdeliciosus)、黄硬皮马勃(Scleroderma flavidum)、多根硬皮马勃(S. polyrhizum)、褐环乳牛肝菌(Suillus luteus)和红绒盖牛肝菌(Xerocomuschrysenteron)6个外生菌根真菌进行盆栽接种试验,分析接种处理间及无性系间苗高、地径、生物量以及养分含量差异。【结果】6个菌种均能与西南桦无性系幼苗形成外生菌根共生体,接种多根硬皮马勃与黄硬皮马勃显著促进了幼苗生长和养分吸收(P0.05),说明其与幼苗的亲和力明显优于其它菌种。尽管菌根侵染率在4个无性系之间无显著差异(P≥0.05),但各菌种对FB4、BY1幼苗生长的促进作用显著强于其它2个无性系。【结论】多根硬皮马勃和黄硬皮马勃可作为西南桦菌根化育苗的优选菌种。  相似文献   

10.
Aims How species respond to climate change at local scales will depend on how edaphic and biological characteristics interact with species physiological limits and traits such as dispersal. Obligate seeders, those species that depend on fire for recruitment, have few and episodic opportunities to track a changing climate envelope. In such cases, long-distance seed dispersal will be necessary to take advantage of rare recruitment opportunities. We examine recruitment patterns and seedling growth below, at and above the timberline of an obligate-seeding Australian montane forest tree (Eucalyptus delegatensis) after stand-replacing fire, and place these changes in the context of regional warming.Methods We use two methods to detect whether E. delegatensis can establish and persist above the timberline after stand-replacing wildfire in montane forests in south-east Australia. First, we examine establishment patterns by using belt transects at six sites to quantify how changes in post-fire recruit density with increasing distance above the timberline seven years post-fire. Second, to determine whether dispersal or physiological constraints determine post-fire establishment patterns, we transplanted seedlings and saplings into bare ground above (100 m elevation), at, and below (50 m elevation) timberline 18-months after fire. We monitored seedling growth and survival for one growing season.Important findings There was minimal upslope migration of the species after fire with most saplings observed near seed-bearing timberline trees, with only occasional outpost saplings. Transplanted seedlings and saplings survived equally well across one growing season when planted above existing timberlines, relative to saplings at or below the timberline. Seedling and sapling growth rates also did not differ across these location, although seedlings grew at much faster rates than saplings. These findings suggest that upslope growing season conditions are unlikely to limit initial range expansion of trees after fire. Instead, it is more likely that seed traits governing dispersal modulate responses to environmental gradients, and global change more generally.  相似文献   

11.
Six-week-old, mycorrhiza-free, bareroot jack pine and black spruce seedlings were outplanted in ten reforestation sites, situated between 45–48° latitude N and 69–74° longitude W, within the province of Quebec, representing diverse operational forestry disturbances and ecological conditions. Two months after outplanting, root systems of black spruce seedlings had fewer mycorrhizae than those of jack pine seedlings. Ectomycorrhizal colonization on black spruce seedlings did not vary significantly with the reforestation site. Percent mycorrhizal colonization for these seedlings was positively correlated with seedling dry weight while with the jack pine seedlings, mycorrhizal colonization varied significantly with the outplanting site and there was no correlation between mycorrhizal formation and seedling dry weight. Multiple linear regressions showed pH to be a determinant soil factor for mycorrhizal colonization for the two species. Drainage was the other influential factor affecting colonization of black spruce while organic matter accumulation was more important for jack pine. Inoculation with selected ectomycorrhizal fungi could be more important for black spruce than for jack pine seedlings.  相似文献   

12.
Non-mycorrhizal spruce seedlings (Picea abies Karst.) and spruce seedlings colonized with Lactarius rufus (Scop.) Fr. or two strains of Paxillits involutus (Batsch) Fr. were grown in an axenic silica sand culture system with frequently renewed nutrient solution. After successful mycorrhizal colonization, the seedlings were exposed to 1 μM PbCI2 for 19 weeks. The degree of infection in all of the mycorrhizal treatments approached 100% during the experiment and was not affected by exposure to Pb. However, the number of root tips per root dry weight and the shoot: root ratio, both in the non-mycorrhizal and the mycorrhizal seedlings, had decreased after the 19 week treatment with PbCl2 Using X-ray microanalysis, the distribution and concentration of Pb in the tissues of mycorrhizal and non-mycorrhizal root tips were compared. In the mycorrhizae of seedlings exposed to Pb no significant accumulation of Pb in the hyphal mantle or in fungal cell walls of the Hartig net were detected. Lead accumulated primarily in the cortex cell walls both of non-mycorrhizal and mycorrhizal root tips. No significant difference of Pb concentrations in root cortex cell walls of non-mycorrhizal and mycorrhizal seedlings was found; except for seedlings colonized with Paxillus involutus strain 537. However, at the endodermis no effect of mycorrhizal fungal colonization on the Pb tissue concentration was detected. The presence of the fungal sheath did not prevent Pb from reaching the root cortex. The endodermis acted as a barrier to Pb radial transport in both mycorrhizal and non-mycorrhizal seedling roots.  相似文献   

13.
Abstract. Question: How does changing resource availability induced by fertilization and defoliation affect seedling establishment and mycorrhizal symbiosis in a subarctic meadow? Location: 610 m a.s.l., Kilpisjärvi (69°03’N, 20°50’E), Finland. Methods: A short‐term full‐factorial experiment was established, with fertilization and defoliation of natural established vegetation as treatments. Seeds of two perennial herbs Solidago virgaurea and Gnaphalium norvegicum were sown in natural vegetation and their germination and growth followed. At the final harvest we measured the response in terms of arbuscular mycorrhizal (AM) colonization, biomass and nitrogen concentration of the seedlings and the established vegetation. Results: Germination rate was negatively affected by defoliation in the unfertilized plots. The shoot biomass of S. virgaurea seedlings was reduced by the defoliation and fertilization treatments, but not affected by their interaction. In G. norvegicum, the germination rate and the seedling shoot biomass were negatively correlated with moss biomass in the plots. In the established plants the arbuscular colonization rate was low and defoliation and fertilization treatments either increased or did not affect the colonization by AM fungi. In the seedlings, the colonization rate by AM fungi was high, but it was not affected by treatments. Both seedlings and established plants were colonized by dark septate fungi. Conclusions: Reduction of plant biomass by herbivores can have different effects on seedling growth in areas of high and low soil nutrient availability. The weak response of AM colonization to defoliation and fertilization suggests that AM symbiosis is not affected by altering plant resource availability under the conditions employed in this study.  相似文献   

14.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

15.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

16.
During the last few years alder has declined in South Bohemia. The possible role of mycorrhizal and actinorhizal symbioses is reviewed and some of the preliminary results from experiments testing the influence of these symbioses on alder growth and the influence of eutrophication on the development of these symbioses are reported. Seedlings ofAlnus glutinosa were inoculated with arbuscular mycorrhizal (AM) fungi and the actinomyceteFrankia in experiment 1, and with rhizosphere soil collected from field sites with different degrees of alder damage in experiment 2. In both experiments, a solution containing nitrate, ammonia and phosphorus in concentrations simulating eutrophic waters, was applied. Both symbioses markedly promoted the growth of the seedlings in experiment 1. The plants inoculated with the rhizosphere soil microflora in experiment 2 were larger than the control plants. Response of the seedlings to the inoculation with the soil from the rhizosphere of damaged alder trees from six field sites differs, even though no correlation was found relating growth to the health status of the trees. Nutrient treatment did not have any effect on the growth of seedlings in either experiment. The dry weight ofFrankia was greater in mycorrhizal plants compared to nonmycorrhizal plants and mycorrhizal colonization is reduced inFrankia inoculated plants supplemented with phosphorus in experiment 1. Nitrogen enhanced mycorrhizal colonization in nodulated plants which were not supplemented with phosphorus no effect of nitrogen on actinorhiza was observed.  相似文献   

17.
The aim of a 3-year study was to investigate whether inoculation of Pinus sylvestris L. and Picea abies (L.) Karst. seedlings with mycorrhizas of Cenococcum geophilum Fr., Piceirhiza bicolorata, and Hebeloma crustuliniforme (Bull.) Quel. has any impact on: 1) survival and growth of outplanted seedlings on abandoned agricultural land, and 2) subsequent mycorrhizal community development. For inoculation, the root system of each plant was wrapped in a filter paper containing mycelium, overlaid with damp peat–sand mixture and wrapped in a paper towel. In total, 8,000 pine and 8,000 spruce seedlings were planted on 4-ha of poor sandy soil in randomized blocks. Already after the first year natural mycorrhizal infections prevailed in the inoculated root systems, and introduced mycorrhizas were seldom found. Yet, the seedlings that had been pre-inoculated with C. geophilum and the P. bicolorata during the whole 3-year period showed significantly higher survival and growth as compared to controls. Moreover, the independent colonization of roots by C. geophilum and the P. bicolorata from natural sources was also observed. A diverse mycorrhizal community was detected over two growing seasons in all treatments, showing low impact of inoculation on subsequent fungal community development. A total of 19 additional ectomycorrhizal morphotypes was observed, which clustered into two well-separated groups, according to host tree species (pine and spruce). In conclusion, the results showed limited ability to increase tree survival and growth, and to manipulate the mycorrhizal community even by extensive pre-inoculations, indicating that fungal community formation in root systems is governed mainly by environmental factors.  相似文献   

18.
Krasowski  M.J.  Owens  J.N.  Tackaberry  L.E.  Massicotte  H.B. 《Plant and Soil》1999,217(1-2):131-143
Thirty-two one-year-old white spruce (Picea glauca (Moench) Voss) seedlings were grown outdoors for one season in 35 L pots buried in the soil. The pots were vertically split in half. One compartment (mineral) was filled with loamy sand. The bottom of the other compartment (organic) was filled with 10 cm sand topped with 15 cm of organic substrates. Two seedling types (16 seedlings each), (i) polystyroblock-grown and (ii) peat-board grown with mechanical root pruning had their root systems split approximately in half into each of the vertical compartments. Controlled-release (26-12-6 N-P-K) fertilizer was added to one or to none (control) of the compartments. Above-ground growth was positively affected by fertilizer placed in either soil compartmnent. Nutrient content of the foliage was greater in fertilized than in unfertilized seedlings; N and P concentrations were significantly increased. Bud reflushing occurred frequently in fertilized seedlings. Unfertilized container-grown seedlings had the fewest roots in either soil compartment. Unfertilized mechanically-pruned seedlings had significantly greater root length, root surface area, and more root tips in mineral than in organic compartments. They also had more P in current-year leaves than did unfertilized container-grown seedlings. Fertilizer added to mineral compartments significantly affected root growth in these compartments only, whereas when added to organic compartments it affected root growth in both compartments. Root systems of the two seedling types were differently affected by fertilizer: in mechanically-pruned seedlings, the number of roots was reduced but their length and diameter increased; in container-grown seedlings, root proliferation was stimulated and this increased total root length and root surface area. Five ectomycorrhizal morphotypes were identified. E-strain was the most abundant. Except for Cenococcum, all morphotypes were present in nursery stock prior to planting. Changes in distribution of morphotypes after planting appeared related to root health condition rather than to applied fertilizer. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Bingham MA  Simard SW 《Mycorrhiza》2012,22(4):317-326
Ectomycorrhizal (EM) networks (MN) are thought to be an important mode of EM fungal colonization of coniferous seedlings. How MNs affect EM communities on seedlings, and how this varies with biotic and abiotic factors, is integral to understanding their importance in seedling establishment. We examined EM fungal community similarity between mature trees and conspecific interior Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings in two experiments where seed and nursery-grown seedlings originating from different locations were planted at various distances from trees along a climatic gradient. At harvest, trees shared 60% of their fungal taxa in common with outplanted seedlings and 77% with germinants, indicating potential for seedlings to join the network of residual trees. In both experiments, community similarity between trees and seedlings increased with drought. However, community similarity was lower among nursery seedlings growing at 2.5 m from trees when they were able to form an MN, suggesting MNs reduced seedling EM fungal richness. For field germinants, MNs resulted in lower community similarity in the driest climates. Distance from trees affected community similarity of nursery seedlings to trees, but there was no interaction of provenance with MNs in their effect on similarity in either nursery seedlings or field germinants as hypothesized. We conclude that MNs of trees influence EM colonization patterns of seedlings, and the strength of these effects increases with climatic drought.  相似文献   

20.
Abstract. Small-scale canopy openings are being increasingly recognized for their importance in boreal forest stand development. Yet more work is necessary to understand their effects on seedling growth. This study investigated the effect of different degrees of canopy opening (all trees cut, conifers cut, conifers girdled and control quadrats) in different stand types on Abies balsamea seedling recruitment, growth and architecture. The lack of a treatment effect on seedling establishment suggests that gaps primarily affect advance regeneration. In the first year after treatment the seedlings in the cut blocks (both conifer cut and all trees cut) responded with an increase in height growth. Changes in the leader to lateral branch ratio were also significant. Continued architectural change in terms of number of branches produced did not occur until after two years had passed. Although not significantly different from the control, increases can be observed in all measurements for the girdled treatment. It is therefore concluded that the growth response of advance regeneration is more important following canopy opening than new seedling recruitment and that seedling performance is greatest where degree of opening is greatest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号