首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pea root segments cut 10–11 mm behind the tip of germinating seedlings were prepared by removal of the central cylinders with a tissue punch. These cortical explants were cultured aseptically on nutrient medium containing auxin with and without added cytokinin. In the absence of kinetin, the cortical cells enlarged and separated but failed to show DNA synthesis, mitosis, cell division or subsequent cytodifferentiation. In the presence of 1 ppm kinetin, cortical nuclei showed 3H-thymidine incorporation beginning between 24 and 32 hr; mitoses began about 48 hr, reaching a maximum of 6% at 60 hr. From an initial number of 8000 cells per segment, the cell count increased to 37,000 by day 7 and 140,000 by day 21. At the outset all mitoses were tetraploid; with time the proportion of tetraploid mitotic cells decreased and an octaploid population increased. A frequency of less than 10% diploid mitoses was observed after day 5. Only 25% of the cortical cells showed initial labeling. Beginning on day 7 tracheary elements differentiated from cortical derivatives. By day 14 about 25% and by day 21 about 35% of the total cell population had formed tracheary elements. As a system for analysis in biochemical and cytological terms, pea cortical explants represent an excellent system for the study of cytodifferentiation.  相似文献   

2.
One mm-thick segments cut 10–11 mm proximal to the root tip of germinating seeds of garden pea Pisum sativum were cultured in sterile nutrient medium containing auxin in the presence and absence of kinetin. In the absence of added cytokinin, pericyclic proliferation occurred, the cortical tissues showed no proliferation and were sloughed off, and a callus tissue of diploid cells was formed. In the presence of kinetin concentrations from 0.1–1.0 ppm cortical cells of the segments were induced to divide, beginning at the third day. From experiments with 3H-thymidine incorporation at different times of culture, from cytological squash preparations and from histological sections it was shown that the cortical cells stimulated to divide by cytokinin underwent DNA synthesis prior to division, were polyploid, and following cell division rapidly underwent cytodifferentiation at 5–7 days to form mature tracheary elements. At 10 days, when over 300,000 new cells had been formed per segment about 16% of these cells had formed tracheary elements. It was concluded that cytokinin, together with auxin, was essential for the initiation of DNA synthesis in the cortical cells, for their subsequent division, and finally for their specific cytodifferentiation.  相似文献   

3.
Culture conditions, allowing the unlimited growth and maintenance in shaken suspensions of a kinetin dependent strain of tobacco pith cells, were determined. Cell clusters from 1 to 25 cells were selected from the cultures to study the cell multiplication after addition of specific growth factors to the basal medium. Cell division was found to be strictly dependent upon the presence in the medium of both kinetin and auxin. In complete medium the generation period was 45 to 49 hours. Kinetics of the total protein synthesis in the cell suspensions have been measured either by estimation of protein nitrogen or by 35S incorporation into the proteins. After 3 days of culture, growth was exponential, as expressed by cell number or protein synthesis, which varied proportionally. Evidence was also found that the initial incorporation rate of radioactivity into the proteins was more rapid than expected from the increment of the protein net weight. It seems therefore reasonable to assume that a significant amount of protein turn over does exist during the initial period of growth. This phenomenon was observed even when no cell division occurred. Kinetin significantly activated protein synthesis, whether or not auxin was present in the medium.  相似文献   

4.
One-mm-thick cortical explants excised aseptically from 10-11 mm behind the tip of 3-day-old roots of the garden pea, Pisum sativum, cv. ‘Little Marvel’ were cultured on a synthetic nutrient medium supplemented with auxin or auxin and cytokinin. Nuclear DNA contents were measured in cells of the explants at the outset and at specified times during culture up to seven days. Fixed and sectioned preparations were stained with the Feulgen method using the DNA-specific dye auramin-O. Fluorescent microspectro-photometric measurements of individual nuclei were made from each cortical population. At day zero all cortical nuclei measured were either 2c or 4c with respect to their DNA content. In the presence of the auxins, indoleacetic acid and 2,4-dichlorophenoxyacetic acid, and the cytokinin, kinetin, DNA values increased to multiples of the 2c level with populations at the 8c and 16c level predominating after three days of culture as well as at seven days. In the presence of auxins alone no change in DNA values was observed during three days. Kinetin concentrations as low as 0.01 ppm were already effective. The data are interpreted to show that cytokinin, in the presence of auxin, induces two rounds of DNA synthesis prior to the first mitoses, the first round being connected with chromosome doubling by endoreduplication and the second one with normal mitosis. From this we inferred that tetraploid cells in leguminous root nodules might have arisen in the same way, i.e., by endoreduplication prior to the first mitoses induced by the rhizobial division stimulus, unless the chromosome number of root cortical cells had already been doubled by endoreduplication in the normally differentiating root systems.  相似文献   

5.
Summary Triiodobenzoic acid (TIBA), an anti-auxin, was found to inhibit both shoot and root formation in cultured excised leaf explants of tobacco (Nicotiana tabacum L.). The shoot formation (SF) medium used required only exogenous cytokinin (N6-benzyladenine) and the root formation (RF) medium required both auxin (indole-3-butyric acid) and cytokinin (kinetin). By transferring the explants from SF or RF media to SF or RF media with TIBA (4.0×10−5 M), respectively or vice versa, at different times in culture, it was found that TIBA inhibition was at the time of meristemoid formation and after determination of organogenesis. This indicates that TIBA interfered with endogenous auxin involvement in organized cell division.  相似文献   

6.
Excised cortical parenchyma from the pea root (cv. Little Marvel) responds to kinetin/auxin treatment with an increased rate of RNA synthesis well before reinitiating DNA synthesis. Few cells synthesize RNA in the 1st hour of culture. In the presence of kinetin/auxin, the nuclear labeling index increases 2.5-fold as compared to control cultures. The RNA synthesis response has an apparent lag period of 2-4 hours as shown by double label ([3H]adenosine/[14C]adenosine) experiments. Qualitatively, the RNA synthesized at 4-6 hours sediments between 18S and 5S. The RNA synthesized at 14-16 hours and 24-26 hours is primarily ribosomal RNA when kinetin is present. In the absence of kinetin, no clear pattern of RNA synthesis emerges.  相似文献   

7.
Miller , J. H. (Yale U., New Haven, Conn.) The effect of auxin and guanine on cell expansion and cell division in the gametophyte of the fern, Onoclea sensibilis. Amer. Jour. Bot. 48(9): 816–819. Illus. 1961.—Auxin and guanine promote cell expansion in 0. sensibilis gametophytes. The optimum concentration of auxin for total expansion is 10−-5 M, but the optimum for elongation is 10−-6 M. Above this concentration the cells expanded isodiametrically. Guanine is active at higher concentrations than auxin. Increasing concentrations of auxin progressively inhibit red light-induced cell division, while guanine has no effect on cell division. Neither kinetin nor adenine promotes cell expansion or cell division.  相似文献   

8.
IAA (indoleacetic acid) is known to induce cell enlargement without cell division in tobacco pith explants grown on an agar medium without added cytokinin. The very long lag period before IAA (2 × 10?5M) stimulates growth, about 3 days, can be useful to study the metabolic changes which lead to the promotion of growth. When the disks are transferred to a medium without IAA after 2 days or less of treatment with IAA, the IAA does not stimulate growth. Disks transferred after 3 days, subsequently show an auxin response, almost as great as those given IAA continuously. At 5 × 10?4M, 5-fluorodeoxyuridine (FUDR), which inhibits DNA synthesis by blocking formation of thymidylate, completely suppresses the lAA-induced growth if it is added together with the IAA or 1 day later. When the FUDR is given 2 days after the IAA, there is a small increment of auxin-induced growth, and an even greater amount if added after 3 days. The period when exogenous auxin must be present to stimulate growth corresponds to the period of FUDR sensitivity. The FUDR inhibition is prevented by thymidine but not by uridine. Other inhibitors of DNA synthesis, hydroxyurea and fluorouracil, also inhibit auxin-induced growth. Thus DNA synthesis seems to be required for auxin induction of cell enlargement in tobacco pith explants. In contrast, FUDR does not inhibit auxin-induced growth in corn coleoptile and artichoke tuber sections.  相似文献   

9.
The organogenic potential of thin layer stem explants of non-reproductive tobacco plants was tested on a hormone-free medium and under various hormonal conditions. A comparison was made between thin layers excised from normal and transgenic plants at the same developmental stage. The transgenic plants were transformed by insertion of TR- and TL-DNA from Agrobacterium rhizogenes 1855 root-inducing plasmid. The aim was to identify hormonal conditions capable of stimulating the expression of the flowering competence present in the differentiated stem tissues at the induced stage before any visible sign of transition to reproductive development. Flower neoformation, observed at the end of the culture period (day 25), occurred on untransformed thin layers only with kinetin treatment. Explants from transgenic plants showed flower bud regeneration on hormone-free medium, indoleacetic acid alone (1 μ M ), kinetin alone (1 μ M ), and most abundantly on indoleacetic acid plus kinetin (1 μ M each). No flower formation was observed on indolebutyric acid plus kinetin (10 μ M and 0.1 μ M , respectively) in both normal and transgenic explants. The latter treatment enhanced rooting instead, above all in the transgenic explants. On hormone-free medium vegetative bud formation was well expressed both by untransformed and transgenic explants, and enhanced by the combined, equimolar concentrations of indoleacetic acid and kinetin.
The results show that cytokinin allows flowering in florally determined stem explants from normal plants. In the transgenic explants, the flowering response increases when indoleacetic acid is added to cytokinin, thus suggesting a role for auxin in enhancing the expression of the florally determined state in thin cell layers of non-reproductive plants.  相似文献   

10.
When cloned pith and leaf tissues of Nicotiana tabacum L. cv. Havana 425 are subcultured for 3 d on auxin-containing medium and labelled for 18 h with [35S]methionine, up to 10% of the labelled, soluble-protein fraction is found in a single band with an apparent molecular weight of approx. 32,000–34,000 dalton on sodium-dodecylsulfate polyacrylamide-gel electrophoretograms. The labelling of this band, designated P33, is dramatically inhibited by the cytokinin, kinetin, in some cell lines at concentrations as low as 1.4·10-8 M. P33 is a major component of the protein fraction obtained from non-habituated clones, cytokinin-habituated clones, and revertant subclones of crown-gall-transformed clones, but cannot be detected in clones habituated for both auxin and cytokinin, or crown-gall-transformed clones. The evidence supports the hypothesis that cytokinin in the presence of auxin regulates the production of a specific, major polypeptide in the soluble-protein fraction of the tissue and that this protein is not produced in tissues autotrophic for both auxin and cytokinin.  相似文献   

11.
Summary DNA-polymerase activity during the cell cycle (S+G2+M+C type) in antheridial filaments cells of Chara vulgaris was studied using the autoradiographic method. Incorporation of 3H-deoxytriphosphates (3H-dTPs) during the whole of interphase indicates, that the cell cycle is not accompanied by distinct changes in enzyme activity. Incorporation of 3H-dTPs was also observed in spermatids and in early stages of spermatogenesis. Intensity of 3H-dTPs incorporation during interphase and spermatogenesis is similar to the intensity of 3H-actinomycin D (3H-AMD) binding. Auxin (IAA) and kinetin stimulate both 3H-AMD binding and 3H-dTPs incorporation; benzyladenine does not affect any of these processes. The in situ autoradiographic method of detecting DNA-polymerase activity reveals availability of DNA template for the enzyme rather than DNA polymerase activity itself.  相似文献   

12.
Experiments have been carried out on seedling and primary leaf explants of Gentiana kurroo Royle. Morphogenic capacities of cotyledons, hypocotyls and roots were investigated using MS (1962) medium supplemented with 4.64 μM kinetin and 2.26, 4.52 or 9.04 μM 2,4-D. Percentage of callusing explants for each combination was inversely proportional to numbers of obtained embryos. Cotyledons showed the highest morphogenic capabilities. To assess the morphogenic potential of leaf explants, 189 combinations of auxin (NAA, dicamba and 2,4-D) and cytokinin (kinetin, BAP, zeatin, CPPU and TDZ) in different concentrations were tested. The presence of NAA with BAP and dicamba with zeatin produced the greatest number of differentiated somatic embryos. Microscopic analysis of responsive explants led to identifying rhizogenic centers, non-embryogenic and embryogenic cells. The best embryo conversion into germlings was obtained on MS medium containing 4.46 μM kinetin, 1.44 μM GA3 and 2.68 μM NAA or ½ MS. Both media were supplemented with 4.0% sucrose and 8.0% agar. Depending on explant origin and conversion medium, 55.8–71.0% of somatic embryos developed into germlings and plants.  相似文献   

13.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

14.
The aim of the study was to obtain an efficient system for Carlina acaulis subsp. simplex propagation. The experimental materials were shoot tips, fragments of hipocotyls, cotyledons and roots isolated from 10-day-old seedlings. The explants were transferred to the proliferation medium supplemented with different types of cytokinin: BA (13.3 μM), kinetin (13.9 μM) and zeatin (13.7 μM) in combination with NAA (0.54 μM). The best morphogenetic response was observed when explants were cultured on the BA supplemented medium. The maximum shoot organogenesis frequency was observed for shoot tip (nearly 94%). On average 8.6 axillary shoots were induced per explant. Multiplication rate increased during the first three subcultures. The shoots revealed a wide range of morphogenetic responses. Differences were observed in the presence or absence of hair on the surface of lamina. These changes had epigenetic character and were the effect of changes in DNA methylation, which is shown by differences in methylation pattern between 18S rRNA and 25S rRNA genes in the analyzed regenerated plants. Nearly 94% of plantlets were rooted on auxin lacking medium. Addition of auxin (NAA or IAA) increased both the rooting percentage (100%) and the number of roots per shoot, but their growth was inhibited. Shortening of the auxin exposition time reduced the number of roots. Moreover, high efficiency (90%) was observed for ex vitro rooting. Plantlets with a large number of roots survived better than the ones with only a few roots. Plants were able to flower and gave viable seeds.  相似文献   

15.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

16.
Regeneration competence of aerial roots of Cleisostoma raeimeferum (Orchidaceae) from in vivo and in vitro sources was tested. The protocorm-Iike bodies and shoot buds were obtained from 2 w old in vivo grown aerial roots and 20 wold in vitro grown roots on Murashige and Skoog medium containing sucrose (3%) (w/v), casein-hydrolysate (2 g l?1), coconut water (15%) (v/v), citric acid (200 mg l?1) and different plant growth regulators. The morphogenetic response from in vivo grown roots was poor and only 20% of the cultures yielded protocorm-like bodies and shoot buds on medium containing IAA (2 µM) and kinetin (2 µM) in combination after 75 d of culture. While 100% morphogenetic response was exhibited by in vitro grown roots on MS medium enriched with IAA (1 µM) and kinetin (1 µM) in combination only after 25 d of culture initiation. The response initiated at the cut ends of the roots and subsequently the entire root length was taken over. Both IAA and kinetin singly stimulated mostly callusing of the explants. The rooted plantlets and multiple shoot buds were obtained after 30 d of culture from protocorm-like bodies and shoot buds on basal medium enriched with IAA (2 µM) and kinetin (6 µM) in combination. The well developed rooted plants could be obtained for transferring to potting mix after ~24 w of culture initiation.  相似文献   

17.
18.
Relationship between cell division and morphogenesis of tissue culture of Daucus carota. III. The influence of kinetin on the ultrastructure of cells.— A previous paper reported a close correlation between cell division as influenced by kinetin and respiration, i.e. a high kinetin induced cell division rate corresponds with low oxygen consumption of the explants. This earlier observation was now confirmed. No significant differences between the ultrastructure of mitochondria of explants cultured with kinetin and those of explants cultured without kinetin could be observed, although the number of mitochondria per cell seems to be increased in explants cultured without kinetin. However, also the number of ribosomes in cells of explants cultured without kinetin seems to be increased as compared with those treated with kinetin. Kinetin apparently has no significant influence on the ultrastructure of cell organells under the conditions employed.  相似文献   

19.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

20.
Multiple shoot formation was induced from excised leaf explants of Annona squamosa Linn. (custard apple) seedlings on a Murashige and Skoog basal medium containing benzylaminopurine and kinetin. Various auxins in combination with the above medium produced callusing of the explants. In an investigation of environmental factors affecting shoot induction it was seen that the maximum number of shoots were obtained using the leaf base with petiole at a temperature of 27°C and a light intensity of 1000 lux. Roots were initiated erratically when individual shoots were treated with an auxin and then transferred to an auxin free medium. The process of the development of adventitious buds in leaf culture was analysed histologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号