首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
植物冷驯化相关基因研究进展   总被引:1,自引:0,他引:1  
李慧  强胜 《植物学通报》2007,24(2):208-217
冷驯化是与提高植物抗冷性有关的生物化学及生理学过程,主要包括寒驯化(cool acclimation)和冻驯化(freezing acdimation)。在冷驯化过程中,植物体内许多基因在转录水平上的表达受到影响,已经克隆了大量的相关基因,它们组成复杂的分子调控网络。目前研究表明不依赖ABA的低温信号转导途径是植物冷驯化机制的重要组成部分,其中CBF/DREB1是该调控过程的关键转录因子,与植物通过冷驯化而提高冰冻耐受能力密切相关。进一步利用转基因技术,可以有效地改善作物的耐冷性状。  相似文献   

2.
李慧  强胜 《植物学报》2007,24(2):208-217
摘要 冷驯化是与提高植物抗冷性有关的生物化学及生理学过程, 主要包括寒驯化(cool acclimation)和冻驯化(freezing acdimation)。在冷驯化过程中, 植物体内许多基因在转录水平上的表达受到影响, 已经克隆了大量的相关基因,它们组成复杂的分子调控网络。目前研究表明不依赖ABA的低温信号转导途径是植物冷驯化机制的重要组成部分, 其中CBF/DREB1是该调控过程的关键转录因子, 与植物通过冷驯化而提高冰冻耐受能力密切相关。进一步利用转基因技术, 可有效地改善作物的耐冷性状。  相似文献   

3.
Cold is one of the critical environmental conditions that negatively affects plant growth and development and determines the geographic distribution of plants. Cold stress signaling is dynamic and interacts with many other signal transduction pathways to efficiently cope with adverse stress effects in plants. The cold signal is primarily perceived via Ca2+ channel proteins, membrane histidine kinases, or unknown sensors, which then activate the sophisticated cold-responsive signaling pathways in concert with phytohormone signaling, the circadian clock, and the developmental transition to flowering, as a part of the stress adaptation response. In this review, we focus on crosstalk between cold signaling and other signal transduction pathways in Arabidopsis.  相似文献   

4.
5.
M Ishitani  L Xiong  H Lee  B Stevenson    J K Zhu 《The Plant cell》1998,10(7):1151-1161
Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time.  相似文献   

6.
7.
8.
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.  相似文献   

9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号