首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Foragers typically attempt to consume food resources that offer the greatest energy gain for the least cost, switching between habitats as the most profitable food resource changes over time. Optimal foraging models require accurate data on the gains and costs associated with each food resource to successfully predict temporal shifts. Whilst previous studies have shown that seasonal changes in food quantity and quality can drive habitat shifts, few studies have shown the effects on habitat choice of seasonal changes in metabolic foraging costs. In this study we combined field and literature data to construct an optimal foraging model to examine the effect of seasonal changes in food quantity, food quality and foraging costs on the timing of a switch from terrestrial to aquatic habitat by non‐breeding mute swans Cygnus olor in a shallow river catchment. Feeding experiments were used to quantify the functional response of swans to changes in aquatic plant biomasses. By sequentially testing alternative models with fixed or variable values for food quantity, food quality and foraging cost, we found that we needed to include seasonal variance in foraging costs in the model to accurately predict the observed habitat switch date. However, we did not need to include seasonal variance in food quantity and food quality, as accurate predictions could be obtained with fixed values for these two parameters. Therefore, the seasonal changes in foraging costs were the key factor influencing the behavioural decision to switch feeding habitats. These seasonal changes in foraging costs were driven by changes in water velocity; the profitability of aquatic foraging was negatively related to water velocity, as faster water required more energy to be expended in swimming. Our results demonstrate the importance of incorporating seasonal variation in foraging costs into our understanding of the foraging decisions of animals.  相似文献   

2.
Individuals within a population may vary considerably in the way they exploit available food resources. If the sexes differ in the size of their feeding apparatus, there can be differences in foraging behaviour and habitat use, hence one sex may be more susceptible to competition. We examined relationships between sexual dimorphism in bill size and foraging behaviour, and habitat and microhabitat use of non-breeding Western Sandpipers Calidris mauri at Bahía Santa María, northwestern Mexico. Western Sandpipers are sexually dimorphic, with females about 15% longer-billed than males. Males used a higher proportion of pecks, had a lower probing–pecking rate, walked at higher rates, foraged at sites with lower water content, and had greater variation in foraging technique than females. Moreover, males decreased their proportion of pecks and foraged at a higher rate than females when they changed from feeding alone to feeding in flocks, suggesting a greater safety advantage or susceptibility to conspecific interference when flock feeding. We compared behaviour and microhabitat usage in three habitats: brackish flats, mangroves, and cattail marshes. Sex-related differences in foraging behaviour and microhabitat use were consistent among habitats. Birds in brackish flats and mangroves used a higher proportion of pecks, foraged at lower rates and walked at higher rates, and foraged at deeper sites, with a lower proportion of water cover, than those in cattail marshes. Sex-related differences in foraging behaviour and microhabitat should reduce the level of competition between sexes, and may account for sex differences in Western Sandpiper distribution observed between habitats in Bahía Santa María.  相似文献   

3.
Detrimental interactions between marine mammals and fisheries are increasing worldwide. The ability to manage these interactions requires the knowledge of where and how interactions occur and the effects they have on species. Many pinnipeds are central place foraging colonial breeders who are restricted in foraging range during breeding. Here, we use a utilization distribution approach to examine the foraging habitats of lactating New Zealand (NZ) sea lions (Phocarctos hookeri) from Dundas and Enderby Islands, Auckland Islands. Annually, the NZ sea lions which breed on these two islands produce 83% of this Nationally Critical species’ pups. Satellite transmitters were attached to 55 females during 2001–2007. Data showed that NZ sea lions utilize the entire Auckland Island shelf with partial habitat partitioning between females from the two breeding islands. This habitat partitioning results in differing degrees of overlap with fisheries and therefore possible differing fishery-related impacts on breeding areas.  相似文献   

4.
Long-distance migration presents complex conservation challenges, and migratory species often experience shortfalls in conservation due to the difficulty of identifying important locations and resources throughout the annual cycle. In order to prioritize habitats for conservation of migratory wildlife, it is necessary to understand how habitat needs change throughout the annual cycle, as well as to identify key habitat sites and features that concentrate large numbers of individuals and species. Among long-distance migrants, sea ducks have particularly complex migratory patterns, which often include distinct post-breeding molt sites as well as breeding, staging and wintering locations. Using a large set of individual tracking data (n = 476 individuals) from five species of sea ducks in eastern North America, we evaluated multi-species habitat suitability and partitioning across the breeding, post-breeding migration and molt, wintering and pre-breeding migration seasons. During breeding, species generally occupied distinct habitat areas, with the highest levels of multi-species overlap occurring in the Barrenlands west of Hudson Bay. Species generally preferred flatter areas closer to lakes with lower maximum temperatures relative to average conditions, but varied in distance to shore, elevation and precipitation. During non-breeding, species overlapped extensively during winter but diverged during migration. All species preferred shallow-water, nearshore habitats with high productivity, but varied in their relationships to salinity, temperature and bottom slope. Sea ducks selected most strongly for preferred habitats during post-breeding migration, with high partitioning among species; however, both selection and partitioning were weaker during pre-breeding migration. The addition of tidal current velocity, aquatic vegetation presence and bottom substrate improved non-breeding habitat models where available. Our results highlight the utility of multi-species, annual-cycle habitat assessments in identifying key habitat features and periods of vulnerability in order to optimize conservation strategies for migratory wildlife.  相似文献   

5.
In many bird species, parents adjust their home‐ranges during chick‐rearing to the availability and distribution of food resources, balancing the benefits of energy intake against the costs of travelling. Over recent decades, European agricultural landscapes have changed radically, resulting in the degradation of habitats and reductions in food resources for farmland birds. Lower foraging success and longer foraging trip distances that result from these changes are often assumed to reduce the reproductive performance of parents, although the mechanisms are not well understood. We tested the behavioural response of chick‐rearing Little Owls Athene noctua to variation in habitat diversity in an agricultural landscape. We equipped females with GPS loggers and received adequate range‐use data for 19 individuals (6063–14 439 locations per bird). In habitats dominated by homogeneous cropland habitats, home‐ranges were over 12 ha in size, whereas in highly diverse habitats they were below 2 ha. Large home‐ranges were associated with increased flight activity (117% of that of birds in small home‐ranges) and distances travelled per night (152%), increased duration of foraging trips (169%) covering larger distances (246%), and reduced nest visiting rates (81%). The study therefore provides strong correlative evidence that Little Owls breeding in monotonous farmland habitats expend more time and energy for a lower benefit in terms of feeding rates than do birds in more heterogeneous landscapes. As nestling food supply is the main determinant of chick survival, these results suggest a strong impact of farmland characteristics on local demographic rates. We suggest that preserving and creating islands of high habitat diversity within uniform open agricultural landscapes should be a key target in the conservation of Little Owl populations.  相似文献   

6.
The energetic cost for juvenile Chinook salmon Oncorhynchus tshawytscha to forage in habitats of different salinity and depth was quantified using a behavioural titration based on ideal free distribution theory. When given a choice between freshwater habitats of different depths (>0·83 or <0·83 m), a greater proportion of fish used the deeper habitat. When the deeper habitat was saltwater, the proportion of fish using it increased. When food was added to both the shallow freshwater and deep saline habitats, however, fish distribution returned to that observed when both habitats were fresh water. This indicates that the preference for deep saline habitats during the stratified phase was driven by some benefit associated with residency in deeper water, rather than salinity. The low perceived cost of low salinity might be in part due to the fish's ability to minimize this cost by only making brief forays into the alternate freshwater habitat. When the food ration delivered to the more costly, shallow habitat was 50% greater than that delivered to the less costly, deep habitat, fish distributed themselves equally between the two habitats, presumably because of equal net benefits. This study demonstrates that juvenile Chinook salmon prefer deep saline habitat to shallow freshwater habitats but will make brief forays into the freshwater habitat if food availability is sufficiently high.  相似文献   

7.
Denson K. McLain  Ann E. Pratt 《Oikos》2010,119(3):508-513
Males of the sand fiddler crab Uca pugilator possess a greatly enlarged claw that is used as a weapon in ritualized contests for control of breeding burrows and is waved to attract females to breeding burrows. Approximately 5400 crabs were collected along the Atlantic coast of North America at 14 localities, all of which had both beach and salt marsh habitats. Five measurements were made on each claw. Principal components analysis was used to generate a single measure of claw size from the seven correlated measures and scores of the claw. Carapace width was measured to index body size. Claw size was greater in beach than marsh habitats, controlling for body size. However, body size did not differ by habitat type. Claw size was also greater in laboratory‐reared males receiving more food, suggesting that differential access to food could influence habitat‐associated differences in claw size. Chlorophyll a concentration and total organic content, reflecting, respectively, the abundance of benthic algae and other food, were greater in beach than marsh habitats. Moreover, feeding opportunities were greater in the wetter beach habitat because crabs there, but not in marsh habitat, can feed at breeding burrows. Adult fiddler crabs continue to molt and grow in both body and claw size as they age. Energetic investment in the claw relative to the body is plastic. It appears that the availability of food can affect the amount of energy invested in the claw.  相似文献   

8.
Occupancy patterns can assist with the determination of habitat limitation during breeding or wintering periods and can help guide population and habitat management efforts. American black ducks (Anas rubripes; black ducks) are thought to be limited by habitat and food availability during the winter, but breeding sites may also limit the size or growth potential of the population. The Canadian Wildlife Service conducts an annual breeding waterfowl survey that we used to explore the hypothesis that black duck carrying capacity is limited by wetlands available for breeding in Québec, Canada. We applied single-visit, multi-species occupancy models to the 1990–2015 population survey data to determine if there was evidence the black duck population was limited by breeding habitat. Using a dynamic (multi-season) occupancy modeling approach, we estimated latent occupancy (occupancy accounting for imperfect detection) of black ducks and then used latent occupancy estimates to derive occupancy, colonization, and extirpation rates. We jointly modeled the occupancy dynamics of black ducks and other duck species in wetlands where both species were present. Throughout the duration of the survey, 44% of wetlands were never observed to be occupied by black ducks. Occupancy models showed wetland size was positively associated with occupancy at the first time step (initial occupancy) and colonization. All 2-species models indicated initial black duck occupancy, persistence (continued occupancy), and colonization were positively associated with the presence of a second species. Colonization rate over the 26-year period ranged from 7% to 27% across all models. Extirpation rates were similar and were constant through time within each model. Low occupancy rates, combined with approximately equal colonization and extirpation rates, suggest there are available wetlands for breeding black ducks in their core breeding area. If breeding habitats are not saturated, this suggests migration or wintering areas may be more limiting to black duck population abundance. © 2019 The Wildlife Society.  相似文献   

9.
Animals often spend less time vigilant and more time feeding when foraging in larger groups. This group-size effect does not, however, consider if larger groups differ systematically from smaller ones: Large groups could form in different habitats than small groups or be composed of a different mix of ages or classes than small groups. We examined how habitat differences and flock size and composition explain feeding and vigilance rates in common cranes Grus grus , wintering in holm oak Quercus ilex dehesas of Spain. Flock size and composition were related to habitat type in cranes: flocks formed in areas sown with cereal crops were larger than flocks formed in set aside areas. Vigilance rate depended on habitat but decreased with increasing flock size in a similar way across all habitats. Juveniles were less vigilant than adults and showed little change in vigilance with flock size. Vigilance increased and feeding time decreased over months from November through February. Our results show that vigilance is affected by habitat but that the group size effect on vigilance is not the product of differences between habitats in group size or composition.  相似文献   

10.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

11.
Benoy  Glenn A.  Nudds  Thomas D.  Dunlop  Erin 《Hydrobiologia》2002,481(1-3):47-59
During the breeding season, migratory waterfowl are attracted to wetlands characterized by high macroinvertebrate availability. Many of these prairie potholes are fishless and this apparent void is filled, at least partially, by tiger salamanders. Based on gut contents from 98 tiger salamanders and published diet data from over 1500 ducks, we show that there is general overlap in diet between both larval and adult tiger salamanders and 10 duck species. Furthermore, when the ducks were split into foraging guilds and compared with tiger salamanders, prey type overlap was 1.7 times higher and prey size was 1.8 times higher with dabbling ducks than diving ducks. Field surveys show that tiger salamander density is more highly correlated with diving duck density across potholes than dabbling duck density. Tiger salamanders have higher diet overlap with dabbling ducks than diving ducks whereas tiger salamanders have higher spatial overlap with diving ducks than dabbling ducks suggesting that these consumers coarsely partition diet and habitat resources. It has been reported that tiger salamanders have specialized diets that are associated with foraging preferences for benthic habitats. This view is too narrow: in southwestern Manitoba, Canada, tiger salamanders are more general consumers with diets more like dabbling ducks that forage mostly in planktonic and littoral habitats. Our results suggest that dabbling and diving ducks are, to different extents, liable to the effects of indirect interactions, specifically competition for common prey, with tiger salamanders.  相似文献   

12.
Life history and habitat use of Norwegian brown trout (Salmo trutta)   总被引:1,自引:0,他引:1  
SUMMARY. 1. Brown trout ( Salmo trutta) life history and habitat use were studied in two Norwegian rivers: the Vosso river system, western Norway, and the Søre Osa, eastern Norway.
2. Age-groups were partly segregated in feeding habitats, the youngest fish living mainly in running water and in the littoral zone of lakes, the older fish also exploiting pelagic waters and deeper epibenthic habitats. In a population with free access to and from the sea, some individuals smoltified and became sea-run migrants, performing yearly migrations to the coastal sea, whereas others stayed as freshwater residents throughout their entire life span.
3. Within local populations, females were larger and less variable in size than males. This was partly because females matured at an older age than males, partly because the sexes tended to exploit feeding habitats with different food and growth Conditions. Within age-groups, females were more pelagic and migrated more than males, whereas males were more confined to running water and epibenthic areas than females. In the pelagic zone, males were more abundant in near-surface water, and females more abundant in deeper areas. When exploiting the same feeding areas, the two sexes grew at the same rate. There therefore appears to be a connection between feeding habitat and the reproductive ecology of brown trout.  相似文献   

13.
Functional responses in polar bear habitat selection   总被引:4,自引:0,他引:4  
Habitat selection may occur in situations in which animals experience a trade-off, e.g. between the use of habitats with abundant forage and the use of safer retreat habitats with little forage. Such trade-offs may yield relative habitat use conditional on the relative availability of the different habitat types, as proportional use of foraging habitat may exceed proportional availability when foraging habitat is scarce, but be less than availability when foraging habitat is abundant. Hence, trade-offs in habitat use may result in functional responses in habitat use (i.e. change in relative use with changing availability). We used logistic and log-linear models to model functional responses in female polar bear habitat use based on satellite telemetry data from two contiguous populations; one near shore inhabiting sea ice within fjords, and one inhabiting pelagic drift ice. Open ice, near the ice edge, is a highly dynamic habitat hypothesised to be important polar bear habitat due to high prey availability. In open ice-polar bears may experience a high energetic cost of movements and risk drifting away from the main ice field (i.e. trade off between feeding and energy saving or safety). If polar bears were constrained by ice dynamics we therefore predicted use of retreat habitats with greater ice coverage relative to habitats used for hunting. The polar bears demonstrated season and population specific functional responses in habitat use, likely reflecting seasonal and regional variation in use of retreat and foraging habitats. We suggest that in seasons with functional responses in habitat use, polar bear space use and population distribution may not be a mere reflection of prey availability but rather reflect the alternate allocation of time in hunting and retreat habitats.  相似文献   

14.
The physiological regulation of body water volume and concentration was evaluated in Pekin ducks, Anas platyrhynchos, slowly acclimated to increasingly saline drinking water (six equal 75 mM NaCl increments). Body mass, total body water (TBW), water flux, plasma osmolality (Osm(pl)), and ionic and osmoregulatory hormone concentrations were measured at the end of each increment. The salinity at which each variable deviates from its homeostatic set point was calculated by continuous two-phase linear regression. We hypothesized that, as drinking water salinity increases: (1) body water increases in concentration before it decreases in volume and (2) that regulating variables that help determine homeostatically set values (plasma hormone concentrations and water flux) deviate from values of freshwater ducks at lower drinking water salinities than the variables they regulate (Osm(pl), hematocrit, TBW). Osm(pl) was the first variable for which we could calculate a deviation from its homeostatically controlled value. It increases at much lower drinking water salinity than that at which TBW decreases, supporting our first hypothesis, but not our second hypothesis. We further hypothesized that, because the concentration of Pekin duck salt gland secretion is only slightly higher than that of their drinking water, they increase water flux (drinking) as salinity of drinking water increases, until the latter exceeds the secretion concentration and then they drink less. There was no change in water flux until it decreases when TBW decreases, 329 mM NaCl and 335 mM NaCl, respectively. The results do not support our hypothesis that Pekin ducks increase drinking as the salinity of their drinking water increases, but do indicate that, at tolerable salinities, Pekin ducks maintain body water volume while allowing body water osmolality to increase. At higher salinities, ducks decrease drinking and use body water to get rid of the excess salt.  相似文献   

15.
Physiological factors are rarely proposed to account for variation in the morphology of feeding structures. Recently, bird bills have been demonstrated to be important convective and radiant heat sinks. Larger bills have greater surface area than smaller bills and could serve as more effective thermoregulatory organs under hot conditions. The heat radiating function of bills should be more important in open habitats with little shade and stronger convective winds. Furthermore, as a means of dumping heat without increasing water loss through evaporation, bills might play a particularly important thermoregulatory role in heat loss in windy habitat where fresh water is limited. North American salt marshes provide a latitudinal gradient of relatively homogeneous habitat that is windy, open, and fresh‐water limited. To examine the potential role of thermoregulation in determining bill size variation among ten species or subspecies of tidal marsh sparrows, we plotted bill size against maximum summer and minimum winter temperatures. Bill surface areas increases with summer temperature, which explained 82–89% of the variance (depending upon sex) when we controlled for genus membership. Latitude alone predicted bill surface area much more poorly than summer temperature, and winter temperatures explained < 10% of the variance in winter bill size. Tidal marsh sparrow bill morphology may, to a large degree, reflect the role of the bill in expelling excess body heat in these unbuffered, fresh‐water‐limited environments. This new example of Allen's rule reaffirms the importance of physiological constraints on the evolution of vertebrate morphologies, even in bird bills, which have conventionally been considered as products of adaptation to foraging niche.  相似文献   

16.
Life-history theory predicts that parental effort in nestling provisioning is optimised in relation to the quality of individuals and/or their habitat. We studied the investment of breeding pairs of blue tits Parus caeruleus for their reproduction during three breeding seasons in deciduous (high quality) vs. mixed (low quality) habitats in order to quantify to what extent habitat quality affects parental effort. Parental effort (costs) was related to their feeding rates and flight distances during foraging. In the deciduous habitat flight distances between nest and foraging patch were shorter than in the mixed habitat (22 m and 40 m, respectively), but the feeding rates did not differ between the habitats. The total flight distance per breeding pair from the first day after hatching until the 17th day of the nestling period was about half of the distance observed in the mixed habitat (375 km and 674 km, respectively). As the quality of fledglings did not differ between habitats, the higher number of fledglings per brood reflects better rewards per foraging trip in the deciduous than in the mixed habitat. Considering the parental foraging effort (costs) and, the quality and number of offspring (benefits), the benefit-cost-ratio was 2–3 times higher in the deciduous than in the mixed woodland.  相似文献   

17.
Intensification of agriculture since the 1950s has enhanced the availability, competitive ability, crude protein content, digestibility and extended growing seasons of forage grasses. Spilled cereal grain also provides a rich food source in autumn and in winter. Long‐distance migratory herbivorous geese have rapidly exploited these feeding opportunities and most species have shown expansions in range and population size in the last 50 years. Results of long‐term studies are presented from two Arctic‐breeding populations, the Svalbard pink‐footed goose and the Greenland white‐fronted goose (GWFG). GWFGs have shown major habitat shifts since the 1950s from winter use of plant storage organs in natural wetlands to feeding on intensively managed farmland. Declines in local density on, and abandonment of, unmodified traditional wintering habitat and increased reproductive success among those birds wintering on farmland suggest that density‐dependent processes were not the cause of the shift in this winter‐site‐faithful population. Based on enhanced nutrient and energy intake rates, we argue that observed shifts in both species from traditionally used natural habitats to intensively managed farmland on spring staging and wintering areas have not necessarily been the result of habitat destruction. Increased food intake rates and potential demographic benefits resulting from shifts to highly profitable foraging opportunities on increasingly intensively managed farmland, more likely explain increases in goose numbers in these populations. The geographically exploratory behaviour of subdominant individuals enables the discovery and exploitation of new winter feeding opportunities and hence range expansion. Recent destruction of traditional habitats and declines in farming at northern latitudes present fresh challenges to the well being of both populations. More urgently, Canada geese colonizing breeding and moulting habitats of white‐fronted geese in Greenland are further affecting their reproductive output.  相似文献   

18.
Foraging animals are influenced by the distribution of food resources and predation risk that both vary in space and time. These constraints likely shape trade-offs involving time, energy, nutrition, and predator avoidance leading to a sequence of locations visited by individuals. According to the marginal-value theorem (MVT), a central-place forager must either increase load size or energy content when foraging farther from their central place. Although such a decision rule has the potential to shape movement and habitat selection patterns, few studies have addressed the mechanisms underlying habitat use at the landscape scale. Our objective was therefore to determine how Ring-billed gulls (Larus delawarensis) select their foraging habitats while nesting in a colony located in a heterogeneous landscape. Based on locations obtained by fine-scale GPS tracking, we used resource selection functions (RSFs) and residence time analyses to identify habitats selected by gulls for foraging during the incubation and brood rearing periods. We then combined this information to gull survey data, feeding rates, stomach contents, and calorimetric analyses to assess potential trade-offs. Throughout the breeding season, gulls selected landfills and transhipment sites that provided higher mean energy intake than agricultural lands or riparian habitats. They used landfills located farther from the colony where no deterrence program had been implemented but avoided those located closer where deterrence measures took place. On the other hand, gulls selected intensively cultured lands located relatively close to the colony during incubation. The number of gulls was then greater in fields covered by bare soil and peaked during soil preparation and seed sowing, which greatly increase food availability. Breeding Ring-billed gulls thus select habitats according to both their foraging profitability and distance from their nest while accounting for predation risk. This supports the predictions of the MVT for central-place foraging over large spatial scales.  相似文献   

19.
2019年10月-2020年1月和2020年10月-2021年1月,采用瞬时扫描法和焦点动物法对鄱阳湖区6种野鸭越冬行为和觅食策略进行了观察.结果 表明,6种野鸭最多的4种行为均为取食、休息、修整和运动.绿头鸭(Anas platyrhynchos)、赤麻鸭(Tadorna ferruginea)和针尾鸭(Anas a...  相似文献   

20.
Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号