首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Primate sperm acquire functional maturity, including vigorous forward motility and the ability to fertilize an ovum, as they transit the unique, regional microenvironment of the epididymal lumen. Several proteins secreted into this luminal fluid are epididymal-specific and androgen-dependent, and thus contribute potentially to sperm maturation. For the adult male chimpanzee, we report the effects of GnRH antagonist-induced androgen deprivation on the histology of the epithelia and interstitium composing the ductuli efferentes, ductus epididymis, proximal ductus (vas) deferens. After 21 days of androgen deprivation, epididymal tissues exhibit characteristic atrophic changes, including cellular disorganization, degradation, and loss of structures. Androgen-deprived cytoplasm is differentially and characteristically disrupted, vacuolated, and reduced in volume, resulting in decreased epithelial height and loss of stereocilia. Most principal cell nuclei appear hyperchromatic, smaller in size, more irregular in outline, and disordered in arrangement, while others appear swollen and vacuolated. Apical cells of the efferent ducts and the basal cells and microvillar borders of the ductus epididymis seem minimally affected by androgen deprivation. Such histologically differential responses suggest correspondingly that androgen is differentially essential to the maintenance of the epididymis and thus to normal functioning of the component tissues. Therefore, epididymal epithelia directly and their secretions indirectly are differentially androgen-dependent.  相似文献   

2.
The epididymis and efferent duct system of the turtle Chrysemys picta were examined. Seminiferous tubules are drained by a series of ducts that form a rete exterior to the tunica albuginea. The rete is located lateral to the testis and consists of anastamosing tubules of varying diameters, lined by a simple epithelium consisting of squamous to cuboidal cells. The rete is highly vascularized. A series of tubules (efferent ductules) connect the rete to the epididymis proper. The efferent ductules are highly convoluted, running between the epididymal tubules and are of varying diameters. The simple columnar epithelium lining these tubules possesses tight junctions, with every third or fourth cell possessing long cilia that protrude into the lumen. The cytoplasm of these epithelial cells contains abundant mitochondria. In the central portion of the efferent ductule, epithelial cells possess granules that appear to be secreted into the lumen by an apocrine process. The epididymis proper is a single, long, highly convoluted tubule that receives efferent ductules along its entire length. It is lined by a pseudostratified epithelium containing several cell types. The most abundant cell (vesicular cell) lacks cilia, but has a darkly staining apical border due to numerous small vesicles immediately beneath the luminal membrane. The small vesicles appear to fuse with each other basally to form larger vesicles. These cells appear to have an absorptive function, and occasionally sperm are embedded in their cytoplasm. The second-most abundant cell is a basal cell found along the basement membrane. The number of these cells fluctuates throughout the year, being most abundant in late summer and early fall. A small narrow cell with an oval nucleus and darkly staining cytoplasm, extending from the basement membrane to the apical surface, is present in small numbers, particularly in the caudal regions of the epididymis. This cell is frequently found in association with another narrow cell having a rounded nucleus and abundant mitochondria in its cytoplasm.  相似文献   

3.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

4.
SED1/MFG‐E8, herein referred to as SED1, is a bimotif adhesive protein with ascribed functions in a range of cell–cell interactions, including sperm‐egg binding. In the male reproductive tract, SED1 is secreted by the initial segment of the epididymis, where it coats sperm and subsequently facilitates binding to the egg zona pellucida. We have recently reported that SED1‐null epididymides show an unexpected incidence of spermatic granulomas, reflecting breakdown of the epithelium and a consequent autoimmune response against sperm antigens. However, spermatic granulomas are most often manifest in the distal segments of the epididymis, whereas the bulk of SED1 is expressed in the proximal epididymis. In some models, the presence of granulomas in the distal epididymis is associated with an underlying defect in the maintenance of luminal fluid homeostasis. Herein, we report that SED1‐null epididymal fluid is both hypo‐osmotic and alkaline, relative to wildtype epididymal fluid. Furthermore, the SED1‐null epididymal epithelium exhibits various hallmarks of disrupted fluid reabsorption and pH regulation, including altered morphology of clear cells, increased intracellular vesicles, and apical distribution of VATPase. Results indicate that the SED1‐null epididymal pathologies are not the secondary consequences of defective testes or efferent ducts or of improper epididymal differentiation, unlike that seen in other epididymal models. The expression and distribution of various ion exchangers, channels, and enzymes that mediate fluid transport and pH regulation are examined in wildtype and SED1‐null epididymides, and models to account for how SED1 functions in luminal fluid dynamics are discussed. Mol. Reprod. Dev. 77: 550–563, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The structure of the human caput epididymidis was examined by gross morphological and light and electron microscopic techniques. There were at least seven types of tubules, each characterized by a different epithelium. These tubules were connected with one another by at least eight types of junctions to form a network. Most of the caput epididymidis was composed of efferent ducts. Within these, five types of tubules, each with a different ciliated epithelium, were found in different regions; and four types of junctions between the efferent ducts and the epididymal tubule were observed. The efferent ducts left the testis, initially as parallel straight tubules containing both ciliated and non-ciliated cells in an epithelium of irregular height. Each efferent duct then coiled tortuously into lobules that folded over one another. These efferent ducts then branched out as thin tubules to join a network of dark tubules which were lined by a regular epithelium containing prominently vacuolated, non-ciliated cells. These tubules anastomosed via common cavities characterized by a ciliated cuboidal epithelium and sometimes joined tubules exhibiting a non-vacuolated ciliated epithelium. The latter, as well as typical efferent ducts, made connection with the epididymis proper in both end-to-end and end-to-side junctions. In the more distal junctions with the epididymis, the efferent ducts joined to a transitional epididymal ductule before joining to the side of the epididymis proper. Post-junctional epithelia in the beginning of the epididymis occasionally contained patches of cells characteristic of efferent ducts. Tall cells with long stereocilia constituted a discontinuous "initial segment"-like region of the epididymis. This is the most detailed study so far of the epithelia and the tubule organization in the caput epididymidis of any species, and most of the results are reported for the first time for the human. Although the pattern of the tubule network resembles that of some domestic species, the rich variety of epithelia has not been appreciated before.  相似文献   

6.
Water and solute transport in the efferent ducts and epididymis are important for the establishment of the appropriate luminal environment for sperm maturation and storage. Aquaporin 9 (AQP9) is the main water channel in the epididymis, but its regulation is still poorly understood. Components of the kinin-kallikrein system (KKS), leading to the production of bradykinin (BK), are highly expressed in the lumen of the male reproductive tract. We report here that the epididymal luminal fluid contains a significant amount of BK (2 nM). RT-PCR performed on epididymal epithelial cells isolated by laser capture microdissection (LCM) showed abundant BK type 2 receptor (Bdkrb2) mRNA expression but no type 1 receptor (Bdkrb1). Double-immunofluorescence staining for BDKRB2 and the anion exchanger AE2 (a marker of efferent duct ciliated cells) or the V-ATPase E subunit, official symbol ATP6V1E1 (a marker of epididymal clear cells), showed that BDKRB2 is expressed in the apical pole of nonciliated cells (efferent ducts) and principal cells (epididymis). Triple labeling for BDKRB2, AQP9, and ATP6V1E1 showed that BDKRB2 and AQP9 colocalize in the apical stereocilia of principal cells in the cauda epididymidis. While uniform Bdkrb2 mRNA expression was detected in the efferent ducts and along the epididymal tubule, marked variations were detected at the protein level. BDKRB2 was highest in the efferent ducts and cauda epididymidis, intermediate in the distal initial segment, moderate in the corpus, and undetectable in the proximal initial segment and the caput. Functional assays on tubules isolated from the distal initial segments showed that BK significantly increased AQP9-dependent glycerol apical membrane permeability. This effect was inhibited by BAPTA-AM, demonstrating the participation of calcium in this process. This study, therefore, identifies BK as an important regulator of AQP9.  相似文献   

7.
Rete testis and epididymis are rare locations for primary tumors or metastasis. Assuming that this may be related to expression level of angiogenic inhibitors, we focused our study on the expression pattern of collagen 18/endostatin. In situ hybridization and immunohistochemistry for collagen 18 and endostatin were carried out on sections of human rete testis and epididymis as well as on epididymal adenoma and human testicular tissue with or without carcinoma in situ (CIS). In situ hybridization revealed strong expression of collagen 18 mRNA in rete testis, efferent ducts and epididymal duct. Immunostaining showed collagen 18 in epithelium and basement membrane as well as in blood vessels of rete testis. Further, in both efferent ducts and epididymal duct, collagen 18 was mainly localized in the basement membrane of these ducts and of the blood vessel wall. Endostatin immunostaining was localized in the epithelium of rete testis, efferent ducts and epididymal duct. This pattern of endostatin staining was absent in epididymal adenoma tissue while tumor associated blood vessels exhibited strong endostatin staining. No endostatin staining was detectable in normal germinal epithelium and CIS cells while Leydig cells exhibited strong endostatin staining. High endostatin expression in epididymis may protect this organ against tumor development. Gene therapeutic strategies providing high expression of endostatin in normal epithelia may be useful to prevent tumor development.  相似文献   

8.
The anterior testicular ducts of squamates transport sperm from the seminiferous tubules to the ductus deferens. These ducts consist of the rete testis, ductuli efferentes, and ductus epididymis. Many histological and a few ultrastructural studies of the squamate reproductive tract exist, but none concern the Hydrophiidae, the sea snakes and sea kraits. In this study, we describe the anterior testicular ducts of six species of hydrophiid snakes as well as representatives from the Elapidae, Homolapsidae, Leptotyphlopidae, and Uropeltidae. In addition, we examine the ultrastructure of these ducts in the yellow‐bellied Sea Snake, Pelamis platurus, only the third such study on snakes. The anterior testicular ducts are similar in histology in all species examined. The rete testis is simple squamous or cuboidal epithelium and transports sperm from the seminiferous tubules to the ductuli efferentes in the extratesticular epididymal sheath. The ductuli efferentes are branched, convoluted tubules composed of simple cuboidal, ciliated epithelium, and many species possess periodic acid‐Schiff+ granules in the cytoplasm. The ductus epididymis at the light microscopy level appears composed of pseudostratified columnar epithelium. At the ultrastructural level, the rete testis and ductuli efferentes of P. platurus possess numerous small coated vesicles and lack secretory vacuoles. Apocrine blebs in the ductuli efferentes, however, indicate secretory activity, possibly by a constitutive pathway. Ultrastructure reveals three types of cells in the ductus epididymis of P. platurus: columnar principal cells, squamous basal cells, and mitochondria‐rich apical cells. This is the first report of apical cells in a snake. In addition, occasional principal cells possess a single cilium, which has not been reported in reptiles previously but is known in some birds. Finally, the ductus epididymis of P. platurus differs from other snakes that have been studied in possession of apical, biphasic secretory vacuoles. All of the proximal ducts are characterized by widening of adjacent plasma membranes into wide intercellular spaces, especially between the principal cells of the ductus epididymis. Our results contribute to a larger, collaborative study of the evolution of the squamate reproductive tract and to the potential for utilizing cellular characters in future phylogenetic inferences. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
We have recently observed that a polyclonal antibody raised against a mouse epididymal luminal fluid protein (MEP 9) recognizes a 25-kDa antigen in mouse testis and epididymis [Rankin et al., Biol Reprod 1992; 46:747-766]. This antigen was localized by light and electron microscopic immunohistochemistry. The immunoreactivity in the testis was found in the residual cytoplasm of the elongated spermatids, in the residual bodies, and in the cytoplasmic droplets of spermatozoa. In the epididymis, the epithelial principal cells were stained from the distal caput to the distal cauda. Immunogold labeling in the principal cells showed diffuse distribution without preferential accumulation in either the endocytic or the secretory apparatus of the cells. In the epididymal lumen, the immunoreactivity was restricted to the sperm cytoplasmic droplets. No membrane-specific labeling was observed in luminal spermatozoa, cytoplasmic droplets, or isolated sperm plasma membranes. Three weeks after hemicastration or severance of the efferent ducts, a normal distribution of the immunoreactive sites was found in the epididymis. Immunoreactivity, was also detected in the epididymal epithelium of immature mice as well as in that of XXSxr male mice having no spermatozoa in the epididymis. These results suggest that the immunoreactivity seen in the principal cells originates from synthesis rather than endocytosis of the testicular protein from disrupted cytoplasmic droplets. Furthermore, these results suggest that the 25-kDa protein is synthesized independently by both testis and epididymis.  相似文献   

10.
11.
Sodium-potassium ATPase (Na+K(+)-ATPase) is a ubiquitous plasma membrane enzyme which uses the hydrolysis of ATP to regulate cellular Na+ and K+ levels and fluid volume. This ion pumping action is also thought to be involved in fluid movement across certain epithelia. There are several different genes for this enzyme, some of which are tissue specific. Using an antibody specific for the catalytic subunit of canine kidney Na+K(+)-ATPase, we have localized immunoreactivity in the seminiferous and epididymal epithelium of rats of various ages. There was no specific staining of 10-day-old rat testis. Faint staining was detected at 13 days and appeared to be associated with the borders of Sertoli cells. At 16 days prominent apical and lateral staining but no basal staining of Sertoli cell membranes was observed. This type of distribution continued until spermatids were present in the epithelium. In the adult rat testis, specific staining was detected in Sertoli cell crypts associated with elongating spermatids, and on the apical and lateral Sertoli cell membrane. In some instances immunoreactivity was concentrated at presumed sites of junctional specializations. In the excurrent ducts of immature and mature rats, Na+K(+)-ATPase staining was heavy in the efferent ducts and somewhat lighter in the epididymis. In all regions, the staining was basolateral although there were variations in intensity among the different parts of the epididymis. These results show 1) that rat testis and epididymal Na+K(+)-ATPase share some immunological determinants with the canine enzyme; 2) that the epididymal enzyme is located in the conventional basolateral position; and 3) that the distribution of Sertoli cell Na+K(+)-ATPase is probably apical and lateral rather than basal.  相似文献   

12.
Light microscopy histology of efferent ductules and the ultrastructural organization of their epithelium were studied in the fan‐throated lizard Sitana ponticeriana Cuvier. The ductules of this lizard are extra‐testicular and arise from an extra‐testicular rete testis. A major portion of the ductules is intra‐epididymal and occupies the cephalic end of the epididymis. The ductules differentiate histologically into proximal and distal portions. The epithelium is formed of two major tall columnar cell types, the non‐ciliated and ciliated, and one minor cell type, the basal cells. Dark cells were also identified. The non‐ciliated cells possess microvilli towards the luminal end, tubular coated pits at the bases of the microvilli, coated vesicles in the apical cytoplasm and multivesicular bodies, lysosomes and mitochondria in the supranuclear and perinuclear cytoplasm, which reflects their role in the uptake of the material they are processing. These cells also participate in spermiophagy. The ciliated cells reflect their role in mixing the luminal content and/or its transport to the distal parts of the male tract. The lizard efferent ductules share many features in common with those of mammals and a crocodile and several other features with birds and a turtle. Spermiophagy by the efferent ductules is reported here for the first time in a reptile.  相似文献   

13.
Several glycoconjugates are thought to bind spermatozoa as they pass through reproductive ducts. Paraffin sections of testis, ductuli efferentes, epididymis, and vas deferens of male mice were stained with ten different lectin-horseradish peroxidase conjugates to localize possible sites of synthesis and secretion of such glycoconjugates, based on the carbohydrate moieties in their constituent oligosaccharide side chains. Principal (columnar) cells lining the efferent ducts, germinal epithelium, and developing and maturing spermatozoa were examined with light microscopy. Staining of the Golgi and apical zones of cells was interpreted as evidence for synthesis and secretion of glycoconjugates. Principal cells synthesized and secreted glycoconjugates with sugar moieties as follows: sialic acid, all regions of the efferent ducts examined; the terminal disaccharide D-galactose- (beta 1----3) -N-acetyl-D-galactosamine, all regions of ducts except epididymis I; terminal alpha-D-galactosamine, some cells in epididymis III-V; N-acetyl-D-galactosamine, ductuli efferentes, epididymis I, II, and some cells in epididymis III-V; alpha-L-fucose, ductuli efferentes, vas deferens, and all regions of the epididymis except IV; N-glycosidic side chains, ductuli efferentes, vas deferens, and epididymis I, IV, and V. All of these sugar residues as well as N-acetyl-D-glucosamine were associated with the acrosomes and tails of spermatozoa throughout the ducts except for alpha-N-acetyl-D-galactosamine in epididymis I, and all occurred during one or more stages of spermiogenesis. The synthesis and secretion of glycoconjugates that bind to spermatozoa appear to involve more regions of the primary reproductive structures than was believed previously.  相似文献   

14.
Morphology of the bovine epididymis   总被引:1,自引:0,他引:1  
The epididymis of the bull was divided into six regions, and morphological differences between regions were studied. The epithelium of all regions contained four cell types: principal and basal epithelial cells, and intraepithelial lymphocytes and macrophages. The epithelium of regions II-V also contained a few apical cells. Principal cells of all regions possessed an endocytotic apparatus including stereocilia underlain by canaliculi, coated vesicles, and subapical vacuoles (up to 1 micron in diameter); however, large vacuoles with a flocculent content and multivesicular bodies (up to 5 microns in diameter) were most numerous in regions II, III, and IV. The unique features of principal cells of region I were the presence of well-developed Golgi bodies, few lipid droplets, and whorls of smooth endoplasmic reticulum in the supranuclear cytoplasm. Numerous mitochondria, distended cisternae of rough endoplasmic reticulum, and dense granules characterized the infranuclear cytoplasm of the principal cells of regions II-VI; however, these features were more developed in region V. Apical cells were characterized by the apical location of the nucleus, many mitochondria in the apical cytoplasm, and few microvilli at the luminal border. Basal cells with few cytoplasmic lipid droplets were present throughout the length of the epididymis but appeared more numerous in region V. Intraepithelial lymphocytes were present at all levels of the epithelium but were never seen in the lumen. Intraepithelial macrophages containing heterogeneous granules, eccentric nuclei, and pseudopods were invariably seen near the basal area of the epithelium in all regions. These observations are discussed in an effort to define the role of each cell type in the epididymal epithelium.  相似文献   

15.
Analyses of samples of luminal fluid from the rete testis, distal efferent ducts, and epididymal regions 2-5 and 8 revealed that 91% of the fluid leaving the testis is reabsorbed by the efferent ducts, 79% of the remainder is reabsorbed proximal to epididymal regions 4 and 5, and there is a net secretion of fluid into the duct caudally. There is a net reabsorption by the efferent ducts of 73% of the protein leaving the testis and then a net secretion along the epididymis. SDS-PAGE of the luminal fluids indicated that four new protein bands that were not present in blood appeared in the efferent ducts, 5 in epididymal regions 1-5, 6 in regions 6 and 7, and one in region 8. Two bands in samples from the efferent ducts were absent caudally, and one band present in region 7 was absent in region 8. The rates of incorporation of (35)S-methionine into minced duct in vitro varied among regions when expressed per milligram of wet weight of tissue (region 2-5 > region 7 > region 6 > region 1 > region 8 > ductuli efferentes), and orchidectomy had little effect on the rates. Incorporation into four proteins that were secreted in vitro (M(r) 38 000, 20 000, 15 000, and 13 000) was reduced or abolished by orchidectomy and restored by testosterone therapy. The secretion of three proteins (M(r) 52 000, 23 000, and 22 000) was reduced or abolished by orchidectomy and not restored by testosterone therapy. SDS-PAGE of detergent extracts of sperm indicated that five proteins were lost and nine were gained during epididymal transit. Seven of the proteins gained were about the same molecular weight as proteins secreted by the epididymis (M(r) 94 000, 52 000, 38 000, 36 000, 22 000, 20 000, and 13 000) and were analyzed using N-terminal amino acid microsequencing.  相似文献   

16.
The present investigation was conducted to demonstrate laminin and α smooth muscle actin (αSMA) in the testis and epididymis of adult chickens, Sudani ducks, pigeons, and rabbits. This study may represent the first indication for the presence of laminin in the male reproductive organs of birds and rabbits and might therefore serve as a milestone for further reports. In the testis of chicken, Sudani duck, pigeon, and rabbit, the laminin was localized in the basal lamina of the seminiferous tubules and of the peritubular myoid cells, in the testicular capsule and to a small extent in the vicinity of Leydig cells. The testicular vasculature also exhibited intense laminin immunostaining. Weak laminin staining was additionally seen in the cytoplasm of the duck Sertoli cells. In the epididymis, the basal lamina of the epididymal epithelium showed a distinctly positive reaction in all birds and rabbit. The basal lamina of the periductal myoid cells also showed a positive reaction. In the interductal tissue, laminin immunostaining was particularly observed in chicken, duck and pigeon. Laminin positive reaction was also seen in the epididymal vasculatures of all birds and rabbit. Interestingly, weak to moderate laminin staining was observed in the apical surface of the ciliated cells of the proximal and distal efferent ductules in chicken, duck and pigeon. αSMA positive reaction was seen in the testicular capsule and in the peritubular myoid cells of all birds and rabbit. In the testicular capsule, αSMA staining was either observed in the inner portion (chicken) or throughout the tunica albuginea (Sudani duck and pigeon), or in the outer aspect (rabbit). Distinct αSMA reaction was additionally observed in the testicular vasculature. In the epididymis of all birds and rabbit, the αSMA was particularly seen in the periductal and interductal myoid cells as well as in the epididymal vasculatures. No αSMA specific staining was however detected in the epididymal epithelium, fibrous lamina propria, and luminal spermatozoa of all birds and rabbits. In conclusion, the distribution of laminin and αSMA in the testis and epididymis might point out to their roles in the male reproduction.  相似文献   

17.
The way in which the human epididymis modifies spermatozoa during their sojourn in this structure might be clarified by knowledge of the nature of its secretions. We have examined the presence of several lysosomal hydrolases in human epididymal tissue and fluids, and their synthesis and secretion by monolayer cultures. Tissues were obtained from men undergoing orchidectomy for prostatic carcinoma. The enzymes cathepsin D and acid -glucosidase were localised in the lysosomes of epithelial cells from the corpus epididymidis, by an immunocytochemical technique. Cathepsin D was also found in epithelial cells of the efferent ducts within lysosomes, apical vesicles and multivesicular bodies. No immunolocalisation of acid glucosidase in the efferent ducts or on the microvilli of the corpus was demonstrable. Cathepsin D, -hexosaminidase (N-acetylglucosaminidase) and -glucosidase were measurable in the luminal fluid from the human corpus epididymidis; -hexosaminidase was secreted into the culture medium by confluent monolayers of epididymal and efferent duct cells. Immunoprecipitation of cell extracts and culture medium of these cultures incubated with 35S-methionine revealed that the precursors of cathepsin D and -hexosaminidase were synthesized and secreted by such monolayers. Thus, active lytic enzymes are secreted by the human epididymis and could modify sperm membranes.  相似文献   

18.
The localization of sulfated glycoprotein-2 (clusterin; SGP-2) was investigated in the rete testis, efferent ducts, and epididymis of the rat using light (LM) and electron (EM) microscope immunocytochemistry. At the LM level, the epithelial cells of the rete testis and efferent ducts demonstrated an intense immunoperoxidase reaction over their apical and supranuclear regions, and sperm in the lumen of the efferent ducts were unreactive. In the EM, gold particles were found exclusively over the endocytic apparatus of these cells. In the proximal area of the epididymal initial segment, an insignificant immunostaining of epithelial cells and sperm was observed. However, the distal area of the initial segment showed a moderate staining over the epithelial principal cells and sperm, while in the intermediate zone of the epididymis a stronger reaction was observed over these cells. The strongest immunoperoxidase reaction was noted in the caput epididymidis, where it formed a distinct mottled pattern. Thus, while some principal cells were intensely stained, others were moderately or weakly stained; a few were completely unreactive. In the corpus and cauda epididymidis, the staining pattern was similar but not as intense. In the EM, only the secretory apparatus of these cells was found to be immunolabeled with gold particles. Sperm in the lumen of these different regions were also labeled. The epithelial clear cells were unreactive throughout the epididymis. Northern blot analysis substantiated these results and showed the presence of highest levels of SGP-2 mRNA in the caput epididymidis, especially in its proximal area, whereas increasingly lower levels were found in the corpus and cauda epididymidis. In summary, these results suggest that testicular SGP-2 dissociates from the sperm during passage through the rete testis and efferent ducts, where it is endocytosed by the epithelial cells lining these regions. In the epididymis, it is replaced by an epididymal SGP-2 that is secreted by the epithelial principal cells of the epididymis. Furthermore, in the epididymis, the principal cells appear to be in different functional states with respect to the secretion of epididymal SGP-2 within a given region of the duct as well as along the epididymal duct.  相似文献   

19.
Osteopontin (OPN), a multifunctional phosphoprotein found in both hard and soft tissues, was examined in the male reproductive tract. The expression and regulation of OPN in the rat testis, efferent ducts, and epididymis was examined during postnatal development through to adulthood using immunocytochemistry at the light- and electron-microscopic level. Immunoblot analysis revealed a major 30-kDa band for epididymal tissue and a major 60-kDa band for the testis. In the testis, immunostaining of OPN was noted in early germ cells from spermatogonia to early pachytene spermatocytes, suggesting a role for OPN as an adhesive protein binding these cells to the basement membrane and adjacent Sertoli cells. Nonciliated cells of the efferent ducts expressed OPN, whereas a cell- and region-specific distribution of OPN was observed in the epididymis. Reactivity of OPN in the apical region of the cell corresponded to labeling of microvilli, small endocytic vesicles, and endosomes, where OPN may serve to remove calcium from the epididymal lumen and, thus, prevent mineral accumulation and subsequent decrease in sperm fertility. Regulation and postnatal studies revealed that circulating androgens regulate OPN expression in principal cells of the epididymis only. Taken together, the data reveal cell- and region-specific expression and regulation of OPN in the epididymis.  相似文献   

20.
Clusterin (sulfated glycoprotein-2) is a heterodimeric glycoprotein synthesized and secreted by rat Sertoli cells. An antigenically similar form is synthesized and secreted by the epididymis. The goal of this study was to define the epididymal regions in which clusterin is present and the regions in which clusterin is secreted and interacts with developing spermatozoa. Seminiferous tubule (STF), caput, corpus, and cauda fluids were collected by micropuncture and/or microperfusion and two-dimensional Western blot analysis was performed with a polyclonal antibody directed against Sertoli cell clusterin. Clusterin was found in both STF and epididymal fluid. STF contained predominantly the clusterin heavy chain (45 kd); however, a 70 Kd heterodimer was present under nonreducing conditions. Two subunits of clusterin with lower molecular weights (41 kd, heavy chain; 32 kd, light chain) and higher isoelectric points were present in the luminal fluid of all epididymal regions. The intraluminal levels of the heavy and light chains decreased from caput to cauda. Analysis by two-dimensional gel electrophoresis of proteins secreted directly into the epididymal luminal fluid revealed that clusterin was secreted by caput epithelium and not by the corpus and cauda epithelium. Western blots of membrane extracts from testicular, caput, and cauda spermatozoa revealed that testicular clusterin was associated with testicular sperm and epididymal clusterin with predominantly caput sperm. Our findings suggest that clusterin is secreted into the caput epididymal lumen, where it binds to sperm and then dissociates from sperm to be endocytosed by cells of the distal epididymal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号