首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Due to the immense ecological and economic significance of grasses, their highly characteristic long–short epidermal patterning and associated silica phytoliths represent significant diagnostic markers in studies of ancient climate change and agriculture. We explore the link between epidermal cell patterning and phytolith development and review the evolutionary history of phytoliths in the context of recent well-resolved phylogenetic analyses of grasses and allied Poales, focusing on early-divergent grasses and the subfamilies that constitute the BEP group (the bamboos and their allies). Dimorphic epidermal patterning is a common feature of Poaceae and the related family Joinvilleaceae, where phytoliths are located primarily in the short cells. However, Joinvillea lacks the short-cell pairs that occur in many grasses. The costal rows of phytoliths that characterize some grasses could represent loss of long–short cell patterning over the veins. Unlobed phytoliths probably represent the ancestral condition in grasses, though bilobate phytoliths evolved at an early stage. Either transverse-unlobed or transverse-bilobate phytoliths predominate in the early-divergent lineages, whereas axial-bilobates (or polylobates) primarily characterize the PACMAD clade and the BEP subfamily Pooideae.  相似文献   

2.
Phylogenetic relationships within the grass family were studied using a newly obtained locus of the nuclear single copy gene topoisomerase 6 (Topo6) spanning the four exons 8–11 and the chloroplast matK gene. Data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All analyses showed genera Streptochaeta and Anomochloa as early diverging, followed by Pharus as sister to the rest of the Poaceae, and monophyly of the subfamily Anomochlooideae was supported by the nuclear dataset. The remaining grasses formed a strongly supported and monophyletic group, which split into the major clades BEP and PACMAD in the Topo6 analyses. Monophyly of the BEP clade was strongly supported by the Topo6 data. The results showed clearly incongruity between the two sets of data, such as the different subfamilial relationships of Bambusoideae, Ehrhartoideae and Pooideae. Most of the analysed species are representatives of subfamily Pooideae, which was analysed in more detail by PCR fragment length differences of another Topo6 region spanning the exons 17–19. Monophyly of Pooideae was strongly supported by the matK data, whereas the nuclear data placed Brachyelytrum outside of the remaining Pooideae. Relationships within the early evolutionary lineages remained largely unresolved in the phylogenetic trees, but the ‘core’ Pooideae (Aveneae/Poeae tribe complex and Hordeeae) were highly supported in all analyses. The differences in amplification lengths illustrate the tribe and subtribe classification of Pooideae. The comparatively conserved structure of the newly studied Topo6 region makes it a promising marker from the nuclear genome that could be successfully PCR-amplified to study higher-level phylogenetic relationships within grasses and perhaps between families within the order Poales.  相似文献   

3.
The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.

The Pharus genome fills an important genomic gap, providing numerous insights into how whole-genome duplication contributed to the origin and diversification of the grass family.  相似文献   

4.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

5.
Expressed Sequence Tags from a variety of plant species have been useful for comparative genomics. The evolution of the Chloridoideae subfamily, previously lacking sequence data, was clarified by analysis of Bermudagrass (Cynodon dactylon) ESTs generated from a normalized cDNA library. Using EST collections, we generated unigene sets and analyzed them to further elucidate the evolutionary history of grass subfamilies. A total of eight grasses (C. dactylon, Sorghum bicolor, Saccharum officinarum, Zea mays, Oryza sativa, Hordeum vulgare, Festuca arundinacea, and Triticum aestivum) in four subfamilies and five tribes were analyzed using two different approaches—synonymous substitution rates (Ks) and phylogenetic trees. Ks distributions of paralogous genes suggested several duplication events in C. dactylon, S. bicolor, H. vulgare, and T. aestivum. Phylogenetic analysis with the unigene sets indicated that the analyzed grasses diverged from a common ancestor after a shared ancient polyploidization (ca. 50.0?~?67.8 million years ago). Ks distributions of orthologous genes suggested that the Chloridoideae and Panicoideae subfamilies diverged about 34.6?~?38.5 million years ago. With the evidence described in this study, we found traces of genomic changes in some grass subfamilies after the divergence of the PACC and BEP clades as well as divergence of Chloridoideae subfamily.  相似文献   

6.
We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three generaand one tribe; Danthonioideae with 292 species in 19 generaand 1 tribe; Micrairoideae with 192 species in nine generaand three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three generaand one tribe; Puelioideae with 11 species in two generaand two tribes; and the Anomochlooideae with four species in two generaand two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty-five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.  相似文献   

7.
Relationships of seven species of smelts (family Osmeridae) inhabiting Russian waters were analyzed on the basis of nucleotide sequence divergence of cytb, COI and intron 1 of rpS7 genes. Nuclear sequence divergence between the species within of the genera Osmerus, Mallotus and Hypomesus was 1.6–2.6, 2.9 and 6.6–11.8 %, respectively, and mitochondrial sequence divergence was 8.9–9.7, 3.9 and 15.1–18.3 %, respectively. The mtDNA divergence was 20.4 % between the genera Hypomesus and Mallotus, 18.47 % between Hypomesus and Osmerus, and 17.62 % between Mallotus and Osmerus. Nuclear DNA divergence was 11.58, 11.19, and 11.37 %, respectively. MP, ML and Bayesian analyses coupled with inclusion in analyses of GenBank-derived sequences of osmerid species that do not inhabit this region suggest that the lineage of the genus Mallotus was the first to separate from the common hypothetic ancestor of the smelts and is sister to the OsmerusHypomesus clade. The position of Hypomesus olidus is not resolved and points to the need for further research.  相似文献   

8.
Based on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the ± 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.  相似文献   

9.
Explaining relationships between species richness and biogeographical patterns over a broad geographic scale is a central issue of biogeography and macroecology. We document the realized climate niches for grasses in China’s nature reserves and discuss its formation mechanism using grass richness data combined with climatic, physiological, and phylogenetic data. Our results suggest that climate niche structure of grasses is phylogenetically conservative for BEP (Bambusoideae, Ehrhartoideae, and Pooideae) and PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae) clades along temperature gradients and for Chloridoideae and Panicoideae along precipitation gradients. At the national scale, the divergence patterns of climate niches between two major clades are more distinguishable than between C3 and C4 grasses. High rates of climate niche evolution are found in C4 clades in the subtropical forest region. There appears to be a strong association between elevation gradients and grass diversity: the specific environmental conditions (e.g. energy) and the rapid shifts of climate conditions drive high grass diversification. Evolutionary conservatism of climate niches may be influenced by the specific adaptive ability to changing environmental conditions within NAD-ME/NADP-ME clades. Our results indicate that adaptations to major climate changes may be accomplished by C4 grass nodes of high climate niche evolutionary rates in China’s nature reserves.  相似文献   

10.
Despite the considerable efforts to reconstruct the phylogeny of grasses, the relationships among the subfamilies Bambusoideae, Pooideae and Ehrhartoideae in the BEP clade remain unresolved. Here we completely sequenced three chloroplast genomes of representative species from Bambusoideae and Ehrhartoideae and obtained 19 additional chloroplast genome sequences of other grasses from GenBank. Using sequences of 76 chloroplast protein-coding genes from the 22 grass species, we fully resolved the phylogeny of the BEP clade. Our results strongly supported the (B,P)E hypothesis, i.e., Bambusoideae and Pooideae are more closely related than Ehrhartoideae. This result was not biased by systematic or sampling errors and was impervious to phylogenetic methods or model specification. The divergence time estimate suggests that the initial diversification of the BEP clade into three subfamilies happened within a short time period (≈ 4 MY). The presence of these short internal branches may explain the inability of previous studies to achieve a confident resolution of the BEP clade. The combination of the sequences of the entire chloroplast genomes provided sufficient phylogenetic information to resolve the BEP phylogeny fully. These results provide a valuable evolutionary framework for comparative and functional genomic studies using the grass family as a model system.  相似文献   

11.
Plastomes of Fabaceae show both significant structural and size variation; however, most published plastomes are from subfamily Papilionoideae and only a few are from the other two subfamilies. In order to address the plastome structural and size variation of subfamily Mimosoideae, we integrated 11 newly sequenced plastomes from representing genera with three previously published ones. Each mimosoid plastome presented a typical quadripartite structure and contained 111 unique genes. Their inverted repeats (IRs) experienced multiple expansion/contraction; a ca. 13-kb IR expansion into small single copy (SSC) was detected in plastomes of a clade formed by tribe Ingeae and Acacia sensu stricto (s.s.), and a ca. 1.7-kb IR expansion into and a ca. 1.9-kb contraction out of large single copy (LSC) were found in Pithecellobium flexicaule and Acacia dealbata, respectively. Linear regression analysis showed decreased synonymous substitution rates of genes relocating from SSC into IR. A loss of both introns of clpP occurred in A. dealbata and Faidherbia albida, and a duplicated clpP copy was detected in A. dealbata. Furthermore, a 421-bp inversion that containing rps18 was found in A. dealbata. The size of mimosoid plastomes was found significantly affected by a IR-SC boundary shift, and also associated with repeat content. Plastome coding and noncoding regions with variable sequence divergence may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels. Plastid phylogenomics well resolved relationships among sampled mimosoid species.  相似文献   

12.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny.  相似文献   

13.
Caragana is endemic to temperate Asia, with most species distributed on the Qinghai–Tibetan Plateau (QTP) and in Northwestern China. Consequently its biogeography should be hypothesized to have been affected by QTP uplift. To examine the biogeography of Caragana in relation to QTP uplift and consequent interior aridification, we conducted molecular dating analyses based on three genes (ITS, cpDNA trnS-trnG and rbcL). Results from relaxed Bayesian BEAST, relaxed Bayesian Multidivtime, and PL (penalized likelihood) indicate that QTP uplift, especially the onset of Himalayan motion at 21–17 Ma, triggered the origin of Caragana (with estimated ages 16–14 Ma). The subsequent QTP rapid uplift at 8 Ma is inferred to have driven the evolution and diversification of the three major clades of Caragana: section Caragana (northern China and the Junggar–Altai–Sayan region), section Frutescentes (Central Asia), and sections Bracteolatae and Jubatae, centered in the QTP. A rapid and active speciation process occurring in the QTP intense uplift at 3.4–1.8 Ma, is indicated by the chronogram.  相似文献   

14.
Features in the complete plastome of Anomochloa marantoidea (Poaceae) were investigated. This species is one of four of Anomochlooideae, the crown node of which diverged before those of any other grass subfamily. The plastome was sequenced from overlapping amplicons using previously designed primers. The plastome of A. marantoidea is 138412 bp long with a typical gene content for Poaceae. Five regions were examined in detail because of prior surveys that identified structural alterations among graminoid Poales. Anomochloa marantoidea was found to have an intron in rpoC1, unlike other Poaceae. The insertion region of rpoC2 is unusually short in A. marantoidea compared with those of other grasses, but with atypically long subrepeats. Both ycf1 and ycf2 are nonfunctional as is typical in grasses, but A. marantoidea has a uniquely long ψycf1. Finally, the rbcL-psaI spacer in A. marantoidea is atypically short with no evidence of the ψrpl23 locus found in all other Poaceae. Some of these features are of noteworthy dissimilarity between A. marantoidea and those crown grasses for which entire plastomes have been sequenced. Complete plastome sequences of other Anomochlooideae and outgroups will further advance our understanding of the evolutionary events in the plastome that accompanied graminoid diversification.  相似文献   

15.
The genetic differentiation among Turkish populations of the narrow-clawed crayfish was investigated using a partial sequence of cytochrome oxidase subunit I gene (585 bp) of 183 specimens from 17 different crayfish populations. Median joining network and all phylogenetic analyses disclosed a strong haplotype structure with three prominent clades diverged by a range between 20 and 50 mutations and substantial inter-group pairwise sequence divergence (5.19–6.95 %), suggesting the presence of three distinct clades within the Anatolian populations of Astacus leptodactylus. The divergence times among the three clades of Turkish A. leptodactylus are estimated to be 4.96–3.70 Mya using a molecular clock of 1.4 % sequence divergence per million years, pointing to a lower Pliocene separation. The high level of genetic variability (H d  = 95.8 %, π = 4.17 %) and numerous private haplotypes suggest the presence of refugial populations in Anatolia unaffected by Pleistocene habitat restrictions. The pattern of genetic variation among Turkish A. leptodactylus populations, therefore, suggests that the unrevealed intraspecific genetic structure is independent of geographic tendency and congruent with the previously reported geographic distribution and number of subspecies (A. l. leptodactylus and A. l. salinus) of A. leptodactylus.  相似文献   

16.
The Bromeliaceae family has been traditionally distributed in the subfamilies Bromelioideae, Tillandsioideae and Pitcairnioideae. However, phylogenetic studies have provided other classifications, highlighting the need for analyses in order to characterize the genome of different species from this family. In this sense, the present work aimed to determine nuclear 2C-value and base composition, characterize the chromosomes and establish the karyogram of Pitcairnia flammea. Flow cytometry yielded 2C = 1.44 pg, AT = 64.28 % and GC = 35.72 % for this species, indicating its relatively small genome size. Despite reduced length and morphological similarity of the chromosomes, P. flammea metaphases presented well-spread chromosomes, with well-defined primary constriction, without chromatin damage and cytoplasmic background. These aspects allowed morphometric chromosomal characterization and assembly of the first karyogram of a Bromeliaceae species. The karyogram displayed 2n = 50 chromosomes, of which all were submetacentric. Karyomorphological analysis revealed grouped pairs of cytogenetically identical chromosomes (2–3, 4–5, 6–9, 10–17, 18–19, 20–23 and 24–25), plus one isolated chromosome (1), not identical to any other. This result suggests an allopolyploid origin for the P. flammea genome. Thus, the present investigation contributed with karyotype data for taxonomic and evolutionary aspects of this group.  相似文献   

17.
A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs. comparing all C4 and all C3 grasses (i.e., ignoring phylogenetic structure). These results were due to important differences in the environmental preferences of C3 BEP and PACMAD clades (the two main grass clades). Winter precipitation was found to be more important for understanding the distribution and environmental niche of C3 PACMADs in comparison with both C3 BEPs and C4 taxa, for which temperature was much more important. Results comparing closely related C3–C4 sister taxa supported the patterns derived from our modeling of the larger clade groupings. Our findings, which are novel in comparing the distribution and niches of clades, demonstrate that the evolutionary history of taxa is important for understanding the functional diversity of C3 and C4 grasses, and should have implications for how grasslands will respond to global change.  相似文献   

18.
Pleistocene rhinoceroses are poorly documented in Turkey where they have been reported only from the late early Pleistocene (1.3–1.1 Ma) travertine deposits of the Denizli Basin. In this work, new rhinoceros remains collected from this basin are assigned to a relatively large-sized Stephanorhinus hundsheimensis on the basis of their morphology and morphometry. The first Turkish record of this species is approximately coeval with the first appearance of Shundsheimensis in Europe, chronologically referred to the late early Pleistocene, ca. 1.2 Ma. During that time, Setruscus still survived in Iberian Peninsula, central Italy and Dacian Basin. The presence of two successive evolutionary morphs for Shundsheimensis during the Pleistocene is not confirmed.  相似文献   

19.
The Kalahari of southern Africa is characterised by sparse vegetation interspersed with microbe-dominated biological soil crusts (BSC) which deliver a range of ecosystem services including soil stabilisation and carbon fixation. We characterised the bacterial communities of BSCs (0–1 cm depth) and the subsurface soil (1–2 cm depth) in an area typical of lightly grazed Kalahari rangelands, composed of grasses, shrubs, and trees. Our data add substantially to the limited amount of existing knowledge concerning BSC microbial community structure, by providing the first bacterial community analyses of both BSCs and subsurface soils of the Kalahari region based on a high throughput 16S ribosomal RNA gene sequencing approach. BSC bacterial communities were distinct with respect to vegetation type and soil depth, and varied in relation to soil carbon, nitrogen, and surface temperature. Cyanobacteria were predominant in the grass interspaces at the soil surface (0–1 cm) but rare in subsurface soils (1–2 cm depth) and under the shrubs and trees. Bacteroidetes were significantly more abundant in surface soils of all areas even in the absence of a consolidated crust, whilst subsurface soils yielded more sequences affiliated to Acidobacteria, Actinobacteria, Chloroflexi, and Firmicutes. The common detection of vertical stratification, even in disturbed sites, suggests a strong potential for BSC recovery after physical disruption, however severe depletion of Cyanobacteria near trees and shrubs may limit the potential for natural BSC regeneration in heavily shrub-encroached areas.  相似文献   

20.
The unusual clingfish Protogobiesox asymmetricus n. gen, n. sp. is described on the basis of four specimens collected in deep water off the north coast of Papua New Guinea in 2012. The species is characterized by its 9–10 dorsal rays, 8 anal rays, 17–24 pectoral-fin rays, 15 principal caudal-fin rays, 3 gills, third arch with 3 gill rakers, 34–35 total vertebrae, with asymmetrical lateral bending starting behind the skull, bent at an angle of 85°–92°; skull asymmetrical in frontal view; skin naked, surface of head and body without striae; disc without adhesive papillae. A new subfamily Protogobiesocinae is described for this species and Lepadicyathus mendeleevi Prokofiev, 2005, which is redescribed. The new subfamily is compared within the family; keys to the subfamilies of Gobiesocidae and the species within the new subfamily are presented; its phylogenetic relationship to other gobiesocids is inferred based on a multi-locus DNA dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号