首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

2.
3.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

4.
Glutathionylated hemoglobin (Hb-SSG) is now recognized as a promising biomarker of systemic oxidative stress. Aim of this study is to gain a mechanistic insight into its formation. The ability of GSSG to form Hb-SSG through a thiol-disulfide exchange mechanism was firstly examined. For this purpose, GSSG (ranging from 0.23 to 230 μmol/g Hb, 15 μM–15 mM final concentrations) was incubated with 1 mM Hb and the relative content of Hb-SSG determined by direct infusion mass spectrometry (Orbitrap as analyzer). No detectable Hb-SSG was observed at a GSSG concentration range found in physiopathological conditions (0.13–0.23 μmol/g Hb). To reach a detectable Hb-SSG signal, the GSSG concentration was raised to 2.3 μmol/g Hb (0.5% relative abundance). The relative content of Hb-GSSG dose-dependently increased to 6% and 11% at 77 and 153 μmol/g Hb, respectively. The second step was to demonstrate whether Hb-SSG is formed through a sulfenic acid intermediate, a well-recognized mechanism of S-protein glutathionylation. Cys β93 sulfenic acid was found to be formed by oxidizing Hb with 1 mM H2O2, as demonstrated by direct infusion and LC–ESI-MS/MS experiments and using dimedone as derivatazing agent. When H2O2-treated Hb was incubated with physiological concentrations of GSH (9 μmol/g Hb), the corresponding Hb-SSG form was detected, reaching 15% of relative abundance. In summary, we here demonstrate that Hb glutathionylation can occur through a Cys sulfenic acid intermediate which is formed in oxidizing conditions. Hb glutathionylation is also mediated by a thiol-disulfide transfer mechanism, but this requires a concentration of GSSG which is far to be achieved in physiopathological conditions.  相似文献   

5.
6.
This study investigated the effects of exogenous hydrogen sulfide (H2S) on the redox states of ascorbate (AsA) and glutathione (GSH) in maize leaves under NaCl (100 mM) stress. Salt stress increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), Γ-glutamylcysteine synthetase (Γ-ECS), and L-galactono-1,4-lactone dehydrogenase (GalLDH), malondialdehyde content and electrolyte leakage, and reduced the ratios of reduced and oxidised forms of AsA (AsA/DHA) and GSH (GSH/GSSG) compared with control. Pretreatment with NaHS (H2S donor) further enhanced the activities of the above enzymes except MDHAR and ameliorated the decrease in the ratios of AsA/DHA and GSH/GSSG compared with the salt stress alone. Pretreatment with NaHS significantly reduced the malondialdehyde content and electrolyte leakage induced by the salt stress. Pretreatment with NaHS alone did not affect any of the above mentioned parameters compared with the control. Our results suggest that exogenous H2S could maintain the redox states of ascorbate and glutathione by up-regulating the ascorbate and glutathione metabolism and thus play an important role for acquisition of salt stress tolerance in maize.  相似文献   

7.
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.  相似文献   

8.
Brassica napus plants were subjected to an oxidative stress by incubating them with 100 μM CuSO4 for different times. The early response to copper stress was evaluated studying changes at both root and leaf level in the putative lipid and antioxidative signals diacylglicerol (DAG), phosphatidic acid (PA) and glutathione, in order to achieve elucidation on how these two kind of signals are related to each other. Activation of phospholipases C (PLC) and D (PLD) was studied in roots and leaves whereas increases in the levels of total and reduced glutathione (GSH) and changes in its redox status were evaluated in roots, leaves and chloroplast stroma. PLC and PLD were measured by studying the production of DAG, PA and phosphatidylbutanol (PtdButOH). PA, PtdButOH as well as DAG increased in roots already after 1 min of the treatment whereas in leaves, where no translocation of the metal occurred, any increase in PA and DAG was observed and no PtdButOH was formed. Roots were affected by oxidative stress showing decreases in glutathione reductase (GR), in total glutathione (GSH + GSSG) and GSH, and increases in oxidised glutathione (GSSG). In leaves, GR was induced during the whole stress period and both GSH + GSSG and GSH showed a peak at 5 min of the treatment. In the stroma, the maximum presence in GSH + GSSG and GSH occurred with a time shift of 25 min compared with total leaf extract.  相似文献   

9.
《Process Biochemistry》2007,42(2):235-243
This paper aims to investigate the effect of H2O2 and paraquat on the activities of superoxide dismutase (SOD) and catalase (CAT), and membrane lipid peroxidation (LPO) levels in newly isolated Streptomyces sp. M3004. SOD activities of Streptomyces sp. M3004, grown in 10 mM and 30 mM H2O2, were significantly lower than the control cultures. On the other hand, as an antioxidant enzyme, CAT activity in both H2O2 treatment conditions increased significantly compared with the control. These activity values in 10 mM and 30 mM H2O2 treatment on the 48th hour of incubation were 3.8- and 6.6-fold higher than the control, respectively. SOD activity decreased significantly with respect to paraquat concentration, which was added at the start of the incubation. CAT activities increased significantly in 1.0 mM and 3.0 mM paraquat treatments compared to control. As an indicative marker of membrane damage, LPO levels of the novel isolate Streptomyces sp. M3004 treated with H2O2, and paraquat stress conditions were significantly higher than the control. Nevertheless, compared with the 30 mM H2O2 in both treatment conditions, LPO levels in 10 mM H2O2 were significantly higher. The decreases in SOD activities in paraquat and H2O2 treatment conditions resulted in the increases in the LPO levels although it increases in CAT activities.  相似文献   

10.
The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222±4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 μM GSNO and by 48% in the presence of 30 μM SPER-NO, in both cases at ~1.25 μM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220±9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 μM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2•- (up to 1.3±0.1 nmol/min. mg protein) and H2O2 (up to 0.64±0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 μM GSNO. The O2•-/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2•- disproportionation. Moreover, H2O2 production was increased by 72–74% when heart coupled mitochondria were exposed to 500 μM GSNO or 30 μM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH]ss which, in turn, leads to an increase in O2•- and H2O2 mitochondrial production rates.  相似文献   

11.
The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG). In this study, triplicate groups of cod larvae at various stages of development (3 to 63 days post-hatch; dph) were sampled for analyses of GSSG/2GSH concentrations, together with activities of antioxidant enzymes and expression of genes encoding proteins involved in redox metabolism. The concentration of total GSH (GSH+GSSG) increased from 610±100 to 1260±150 μmol/kg between 7 and 14 dph and was then constant until 49 dph, after which it decreased to 810±100 μmol/kg by 63 dph. The 14- to 49-dph period, when total GSH concentrations were stable, coincides with the proposed period of metamorphosis in cod larvae. The concentration of GSSG comprised approximately 1% of the total GSH concentration and was stable throughout the sampling series. This resulted in a decreasing Eh from −239±1 to −262±7 mV between 7 and 14 dph, after which it remained constant until 63 dph. The changes in GSH and Eh were accompanied by changes in the expression of several genes involved in redox balance and signaling, as well as changes in activities of antioxidant enzymes, with the most dynamic responses occurring in the early phase of cod larval development. It is hypothesized that metamorphosis in cod larvae starts with the onset of mosaic hyperplasia in the skeletal muscle at approximately 20 dph (6.8 mm standard length (SL)) and ends with differentiation of the stomach and disappearance of the larval finfold at 40 to 50 dph (10–15 mm SL). Thus, metamorphosis in cod larvae seems to coincide with high and stable total concentrations of GSH.  相似文献   

12.
Effects of exogenous nitric oxide (NO) on starch degradation, oxidation in mitochondria and K+/Na+ accumulation during seed germination of wheat were investigated under a high salinity level. Seeds of winter wheat (Triticum aestivum L., cv. Huaimai 17) were pre-soaked with 0 mM or 0.1 mM of sodium nitroprusside (SNP, as nitric oxide donor) for 20 h just before germination under 300 mM NaCl. At 300 mM NaCl, exogenous NO increased germination rate and weights of coleoptile and radicle, but decreased seed weight. Exogenous NO also enhanced seed respiration rate and ATP synthesis. In addition, seed starch content decreased while soluble sugar content increased by exogenous NO pre-treatment, which was in accordance with the improved amylase activities in the germinating seeds. Exogenous NO increased the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6); whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide anions (O2??) release rate in the mitochondria. Exogenous NO also decreased Na+ concentration while increased K+ concentration in the seeds thereby maintained a balance between K+ and Na+ during germination under salt stress. It is concluded that exogenous NO treatment on wheat seeds may be a good option to improve seed germination and crop establishment under saline conditions.  相似文献   

13.
14.
Although some plant responses to salinity have been characterized, the precise mechanisms by which salt stress damages plants are still poorly understood especially in woody plants. In the present study, the physiological and biochemical responses of Broussonetia papyrifera, a tree species of the family, Moraceae, to salinity were studied. In vitro-produced plantlets of B. papyrifera were treated with varying levels of NaCl (0, 50, 100 and 150 mM) in hydroponic culture. Changes in ion contents, accumulation of H2O2, as well as the activities and isoform profiles of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the leaves, stems and roots were investigated. Under salt stress, there was higher Na+ accumulation in roots than in stems and leaves, and Ca2 +, Mg2 + and P3 + content, as well as K+/Na+ ratio were affected. NaCl treatment induced an increase in H2O2 contents in the tissues of B. papyrifera. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased H2O2 and salinity appeared to be associated with differential regulation of distinct SOD and POD isoenzymes. Moreover, SDS-PAGE analysis of total proteins extracted from leaves and roots of control and NaCl-treated plantlets revealed that in the leaves salt stress was associated with decrease or disappearance of some protein bands, and induction of a new protein band after exposure to 100 and 150 mM NaCl. In contrast, NaCl stress had little effect on the protein pattern in the roots. In summary, these findings may provide insight into the mechanisms of the response of woody plants to salt stress.  相似文献   

15.
Aloe-emodin (AE) is one of the most important active components of Rheum officinale Baill. The present study aimed to investigate that AE could attenuate scopolamine-induced cognitive deficits via inhibiting acetylcholinesterase (AChE) activity and modulating oxidative stress. Kunming (KM) mice were received intraperitoneal injection of scopolamine (2 mg/kg) to induce cognitive impairment. Learning and memory performance were assessed in the Morris water maze (MWM). After behavioral testing, the mice were sacrificed and their hippocampi were removed for biochemical assays (superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), AChE and acetylcholine (ACh)). In vitro, we also performed the AChE activity assay and H2O2-induced PC12 cells toxicity assay. After 2 h exposure to 200 μM H2O2 in PC12 cells, the cytotoxicity were evaluated by cell viability (MTT), nitric oxide (NO)/lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) production. Our results confirmed that AE showed significant improvement in cognitive deficit in scopolamine-induced amnesia animal model. Besides, it increased SOD, GPx activities and ACh content, while decreased the level of MDA and AChE activity in AE treated mice. In addition, AE was found to inhibit AChE activity (IC50 = 18.37 μg/ml) in a dose-dependent manner. Furthermore, preincubation of PC12 cells with AE could prevent cytotoxicity induced by H2O2 and reduce significantly extracellular release of NO, LDH and intracellular accumulation of ROS. The study indicated that AE could have neuroprotective effects against Alzheimer’s disease (AD) via inhibiting the activity of AChE and modulating oxidative stress.  相似文献   

16.
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.  相似文献   

17.
Anabaena doliolum subjected to 43, 48, 53 and 58 °C temperature for 1, 2, 3 and 4 h, showed temperature and time-dependent increase in H2O2 production and MDA contents. All the measured enzymes of the antioxidative defense system (SOD, CAT, APX and GR) showed increase in their activities at 43 °C after 1 h of treatment, but at higher temperature their activity declined. The content of antioxidants (ASC, GSH, and α-TOC) increased significantly with rise in temperature as well as duration of treatment. This study clearly demonstrates that when enzymatic defense system becomes inactive, the antioxidants (GSH, and α-TOC) are induced to protect the cyanobacterium from heat stress. One of the major roles of these antioxidants appears to be the protection of PSII as reflected by an effect on O2 evolution up to 53 °C.  相似文献   

18.
采用营养液培养方法,研究外源NO对铜胁迫下番茄(Lycopersicon esculentum Mill.)幼苗根系抗坏血酸(AsA)-谷胱甘肽(GSH)循环中抗氧化物质和抗氧化酶系的影响.结果表明:外施适量NO(硝普钠)可提高铜胁迫下番茄幼苗根系AsA、GSH含量和AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽),降低DHA和GSSG含量.添加100 μmol·L-1 BSO(谷胱甘肽合成酶抑制剂)处理下,外源NO可提高铜胁迫下番茄幼苗根系的AsA含量、AsA/DHA及抗坏血酸酶(AAO)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)比活性,降低DHA、GSH、GSSG含量及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)比活性;添加250 μmol·L-1 BSO处理下,外源NO提高了铜胁迫下番茄幼苗根系的AsA、GSH、GSSG含量、AsA/DHA及APX和GR比活性,降低了DHA含量及AAO、DHAR和MDHAR比活性.说明外源NO影响了铜胁迫下番茄根系的AsA-GSH代谢循环,并通过调节AsA/DHA、GSH/GSSG的变化来减轻氧化胁迫,从而缓解铜胁迫对番茄根系的伤害.  相似文献   

19.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

20.
Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NPxSHNPSSNP, NPxSHNPSH), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NPxSHPSSNP). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4′-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NPxSHNPSSNP, and NPxSHNPSH is 1 nmol –SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号