首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.  相似文献   

2.
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of L-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after L-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-D-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after L-NAME. To examine baroreceptor and cardiopulmonary reflex function, L-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 microg iv) before and after L-NAME. Five minutes after L-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 microg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after L-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.  相似文献   

3.
AimsCilnidipine is a unique Ca2 + channel blocker that inhibits both L-type and N-type Ca2 + channels. The present study aimed to assess the effects of intravenous cilnidipine on sympathetic outflow and sympathetic arterial pressure (AP) and heart rate (HR) regulations.Main methodsCarotid sinus baroreceptor regions were isolated from the systemic circulation in anesthetized and vagotomized Wistar Kyoto rats. Changes in efferent sympathetic nerve activity (SNA), AP and HR in response to a stepwise input of carotid sinus pressure were examined before and during intravenous cilnidipine administration (30 μg/kg bolus + 100 μg kg? 1 h? 1 infusion, n = 6).Key findingsCilnidipine significantly reduced the AP response range (from 68.0 ± 10.2 to 34.6 ± 4.1 mmHg, P = 0.007) but did not affect the SNA response range (from 90.4 ± 10.3 to 84.7 ± 9.5%, P = 0.297) or the HR response range (from 50.4 ± 10.1 to 48.1 ± 6.2 beats/min, P = 0.719).SignificanceCilnidipine, at a depressor dose used in the present study, does not acutely suppress sympathetic outflow from the central nervous system. Also, it spared the sympathetic HR response, suggesting that N-type Ca2 + channel blocking action at the cardiac sympathetic nerve endings may be a modest one.  相似文献   

4.
Acute studies showed that ghrelin acts on the central nervous system (CNS) to reduce blood pressure (BP), heart rate (HR) and sympathetic activity. However, the long-term CNS cardiovascular actions of ghrelin are still unclear. We tested whether chronic intracerebroventricular (ICV) infusion of ghrelin causes sustained reductions in BP, HR and whether it alters baroreceptor sensitivity (BRS) and autonomic input to the heart. A cannula was placed in the lateral ventricle of male Sprague–Dawley (SD) rats for ICV infusions via osmotic minipump (0.5 μl/h). BP and HR were measured 24-h/day by telemetry. After 5 days of control measurements, ghrelin (0.21 nmol/h) or saline vehicle were infused ICV for 10 days followed by a 5-day post-treatment period. Chronic ICV ghrelin infusion increased food intake (22 ± 3 to 26 ± 1 g/day) leading to ∼50 g body weight gain. BP fell slightly during ghrelin infusion while HR decreased by ∼26 bpm. In control animals BP and HR increased modestly. ICV Ghrelin infusion caused a 50% reduction in sympathetic tone to the heart but did not alter BRS. We also tested if the depressor responses to ICV ghrelin infusion were enhanced in spontaneously hypertensive rats (SHR) due to their high basal sympathetic tone. However, we observed similar BP and HR responses compared to normotensive rats. These results indicate that ghrelin, acting via direct actions on the CNS, has a sustained effect to lower HR and a modest impact to reduce BP in normotensive and hypertensive animals despite increasing appetite and body weight.  相似文献   

5.
This paper investigates the relationship between plasma trace element and plasma leptin, as well as percent fat mass, in 16 male basketball athletes. Blood samples were obtained before intensive training and 24 h after intensive training to measure plasma zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iron (Fe), and leptin levels. High-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride (TG), total and cholesterol (TC) levels were determined using commercially available kits for humans. Subjects presented similar values in terms of age (21.1 ± 2.2 years old), body mass index (23.9 ± 2.00 kg/m2), percent body fat (14.40 ± 1.52%), plasma hemoglobin (150.1 ± 9.4 g/L), plasma Zn (17.47 ± 1.28 μmol/l), plasma Cu (13.42 ± 1.40 μmol/L), plasma Ca (2.41 ± 0.14 mmol/L), and plasma Mg (0.96 ± 0.02 mmol/L). The correlation analysis between degree of plasma leptin and plasma element contents was performed using the SPSS 16.0 software. Plasma Zn correlated positively with plasma leptin (r = 0.746, P < 0.01), Cu–Zn SOD (r = 0.827, P < 0.01), and negatively with percent fat mass (r = –0.598, P < 0.05) under no-training conditions. Meanwhile, plasma Cu, Ca, Mg, and Fe did not correlate with plasma leptin or percent fat mass (P > 0.05). In conclusion, plasma Zn may be involved in the regulation of plasma leptin and may serve as a lipid-mobilizing factor in Chinese men's basketball athletes.  相似文献   

6.
The pathophysiology of delirium remains poorly understood. Low leptin level has been associated with features leading to delirium such as dysregulated immune functions and loss of neuroprotective effects. The purpose of the present study was to investigate the relationship between plasma leptin level at intensive care unit (ICU) entry and subsequent occurrence of delirium in critically ill patients. This single-center prospective cohort study in China allocated 336 critically ill patients admitted to ICU between 05/2015 and 05/2016 into a delirium group (n = 102) and non-delirium group (n = 234) based on whether delirium occurred during their stay at the ICU. Patients were examined at least twice daily and delirium was diagnosed using the Confusion Assessment Method for the ICU (CAM-ICU). Blood samples were obtained after ICU entry. Plasma leptin concentrations were measured by ELISA. Delirium occurred in 30.4% (102/336) of patients. Patients who developed delirium showed significantly lower leptin level at ICU entry than those who did not (6.1 ± 3.2 vs. 9.2 ± 5.9 ng/mL; P < 0.001). Low plasma leptin level at ICU entry was independently associated with subsequent occurrence of delirium (OR, 0.865; 95%CI, 0.802–0.934; P < 0.001). Other independent risk factors for delirium included increasing age (OR, 1.050; 95%CI, 1.020–1.080; P = 0.001) and Acute Physiology and Chronic Health Evaluation-II (APACHE-II) score (OR, 1.148; 95%CI, 1.092–1.208; P < 0.001). Patients who developed delirium had a prolonged duration of ICU stay and higher mortality. Low plasma leptin level at ICU entry was associated with the occurrence of delirium in critically ill patients.  相似文献   

7.
Experiments were done in male Wistar rats to investigate the effects of microinjection of hypocretin-1 (Hcrt-1) into the nucleus of the solitary tract (NTS) on mean arterial pressure (MAP), heart rate (HR), and the baroreflex. In the first series, the distribution of Hcrt-1-like immunoreactivity (Ir) was mapped within the region of NTS. Hcrt-1 Ir was found throughout the NTS region, predominantly within the caudal dorsolateral (Slt), medial (Sm), and interstitial subnuclei of the NTS. In the second series, in alpha-chloralose or urethane-anesthetized rats, microinjection of Hcrt-1 (0.5-5 pmol) into the caudal NTS elicited a dose-dependent decrease in MAP and HR. A mapping of the caudal NTS region showed that the largest depressor and bradycardia responses elicited by Hcrt-1 were from sites in the Slt and Sm. In addition, doses >2.5 pmol at a small number of sites localized to the caudal commissural nucleus of NTS elicited pressor and tachycardia responses. Intravenous administration of the muscarinic receptor blocker atropine methyl bromide abolished the bradycardia response and attenuated the depressor response, whereas subsequent administration of the nicotinic receptor blocker hexamethonium bromide abolished the remaining MAP response. Finally, microinjection of Hcrt-1 into the NTS significantly potentiated the reflex bradycardia to activation of arterial baroreceptors as a result of increasing MAP by systemic injections of phenylephrine (2-4 microg/kg). These results suggest that Hcrt-1 in the NTS activates neuronal circuits that increases vagal activity to the heart, inhibits sympathetic activity to the heart and vasculature, and alters the excitability of NTS neuronal circuits that reflexly control the circulation.  相似文献   

8.
The recovery of protein from saliva has been extensively investigated as a method to monitor health. The aim of this study was to compare filtration and centrifugation as two methods of saliva processing necessary for determining the levels of salivary leptin and adiponectin. Thirty-seven healthy patients (median age of 45 years; range 35–73) participated in the study. Unstimulated whole saliva was collected by a drooling technique. An aliquot was filtered using a Millex-Millipore® (0.45 μm PVDF Dura Pore membrane) syringe and a second aliquot was centrifuged at 15 000 × g for 15 min at 4 °C. Leptin and adiponectin levels were analyzed using an ELISA kit for serum (RayBio®, GA, USA) with minor modifications. Leptin and adiponectin levels following the filtration technique yielded comparable results with those after centrifugation. Correlation was observed between filtered and centrifuged salivary leptin levels ((r = 0.9155; 95% CI 0.8362–0.9573; p < 0.0001) with concordance correlation coefficient k 0.9114 (95% CI 0.8332–0.9539)). Less correlation was observed for adiponectin ((r = 0.5718; 95% CI 0.3041–0.7558; p = 0.0002) with concordance correlation coefficient k 0.5586 (95% CI 0.2977–0.7419)). Using a Bland–Altman plot, similar measurements for both adipocytokines were observed with mean difference within a 95% CI, and interpreted as no systematic differences between the two processing techniques. This study showed that filtration is an alternative saliva processing technique to retrieve supernatant for protein analysis. Filtered saliva yielded leptin and adiponectin concentrations comparable with those obtained from centrifuged saliva.  相似文献   

9.
Higher plasma leptin levels have been associated with poor clinical outcomes after intracerebral hemorrhage. Nevertheless, their links with hematoma growth and early neurological deterioration are unknown. Therefore, we aimed to investigate the relationship between plasma leptin levels, hematoma growth, and early neurological deterioration in patients with acute intracerebral hemorrhage. We prospectively studied 102 consecutive patients with acute spontaneous basal ganglia hemorrhage presenting within 6 h from symptoms onset. Significant hematoma growth was defined as hematoma enlargement >33% at 24 h. Early neurological deterioration was defined as an increase of ≥4 points in National Institute of Health Stroke Scale score at 24 h from symptoms onset. We measured plasma leptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma leptin level emerged as the independent predictor of hematoma growth (odds ratio, 1.182; 95% confidence interval, 1.061–2.598; P = 0.008) and early neurological deterioration (odds ratio, 1.193; 95% confidence interval, 1.075–2.873; P = 0.004). Using receiver operating characteristic curves, we calculated areas under the curve for hematoma growth (area under curve, 0.844; 95% confidence interval, 0.759–0.908) and early neurological deterioration (area under curve, 0.857; 95% confidence interval, 0.774–0.918). The predictive performance of leptin was similar to, but did not obviously improve that of hematoma volume. Thus, leptin may help in the prediction of hematoma growth and early neurological deterioration after intracerebral hemorrhage.  相似文献   

10.
11.
Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter < 192 micros, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged approximately 70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN- or those from unlabeled animals, other second-order NTS neurons (jitters < 200 micros) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).  相似文献   

12.
F J Gordon 《Peptides》1990,11(2):305-309
These studies investigated whether the nucleus of the tractus solitarius (NTS) is a central site where opioids modulate baroreceptor reflexes. Microinjections into the NTS of [D-Ala2,MePhe4, Gly-ol5]enkephalin (DAGO) significantly reduced reflex-mediated depressor responses evoked by electrical stimulation of the aortic nerve. Subsequent NTS injections of naloxone restored baroreflexes to control levels. These results demonstrate that the NTS is a central site where exogenously administered opioids can modulate baroreceptor reflexes. NTS injections of naloxone had no effect on baroreflex function, suggesting that tonic activation of opioid receptors at this site plays little or no role in central baroreflex control.  相似文献   

13.
Background and aimsObese subjects have elevated leptin levels, which have been associated with increased risk of cardiovascular events. Because leptin has direct cellular effects on various tissues, we tested the hypothesis that leptin levels are associated with cardiac structure or function in patients with coronary artery disease (CAD).Methods and resultsThe study population consisted of 1 601 CAD patients, of whom 42% had type 2 diabetes mellitus. Plasma leptin was measured in fasted state and an echocardiography performed. Leptin levels were not related to LV dimensions or LV ejection fraction (NS for all), but higher leptin levels were associated with elevated E/E’ (9.43 vs. 11.94 in the lowest and the highest leptin quartile, respectively; p = 0.018 for trend). Correspondingly, a decreasing trend was observed in E/A (1.15 vs. 1.06; p = 0.037). These associations were independent of obesity and other relevant confounding variables.ConclusionWe conclude that elevated plasma leptin levels are associated with impaired left ventricular diastolic function in patients with CAD independently of obesity and other confounding variables. Leptin may be one of the mechanistic links explaining the development of congestive heart failure in obese subjects.  相似文献   

14.
Previously we have shown that adenosine operating via the A(1) receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A(1) receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats (n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT(3) receptor agonist phenylbiguanide, PBG, 1-8 μg/kg) before and after selective stimulation of NTS A(1) adenosine receptors [microinjections of N(6)-cyclopentyl adenosine (CPA), 0.033-330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control (n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-(p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) (n = 9) did not affect the reflex responses. We conclude that activation of NTS A(1) adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A(1) adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS.  相似文献   

15.
Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors reversed the normal depressor and sympathoinhibitory responses to stimulation of NTS A2a receptors into pressor and sympathoactivatory responses and attenuated the heart rate decreases; however, it did not change the increases in pre-ASNA. We conclude that NTS NO mechanisms differentially affect regional sympathetic outputs and differentially contribute to the pattern of regional sympathetic responses evoked by stimulation of NTS A2a receptors.  相似文献   

16.
17.
The parasubthalamic nucleus (PSTN) projects extensively to the nucleus of the solitary tract (NTS); however, the function of PSTN in cardiovascular regulation is unknown. Experiments were done in alpha-chloralose anesthetized, paralyzed, and artificially ventilated rats to investigate the effect of glutamate (10 nl, 0.25 M) activation of PSTN neurons on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA). Glutamate stimulation of PSTN elicited depressor (-20.4 +/- 0.7 mmHg) and bradycardia (-26.0 +/- 1.0 beats/min) responses and decreases in RSNA (67 +/- 17%). Administration (intravenous) of atropine methyl bromide attenuated the bradycardia response (46%), but had no effect on the MAP response. Subsequent intravenous administration of hexamethonium bromide blocked both the remaining bradycardia and depressor responses. Bilateral microinjection of the synaptic blocker CoCl(2) into the caudal NTS region attenuated the PSTN depressor and bradycardia responses by 92% and 94%, respectively. Additionally, prior glutamate activation of neurons in the ipsilateral NTS did not alter the magnitude of the MAP response to stimulation of PSTN, but potentiated HR response by 35%. Finally, PSTN stimulation increased the magnitude of the reflex bradycardia to activation of arterial baroreceptors. These data indicate that activation of neurons in the PSTN elicits a decrease in MAP due to sympathoinhibition and a cardiac slowing that involves both vagal excitation and sympathoinhibition. In addition, these data suggest that the PSTN depressor effects on circulation are mediated in part through activation of NTS neurons involved in baroreflex function.  相似文献   

18.
The adipokine leptin and oncotic protein albumin are endocytosed in the proximal tubule via the scavenger receptor megalin. Leptin reduces megalin expression and activates cell signalling pathways that upregulate fibrotic protein expression. The aim of this study was to investigate if leptin uptake in proximal tubule cells was via the albumin-megalin endocytic complex. In immortalised proximal tubule Opossum kidney cells (OK) fluorescent leptin and albumin co-localised following 5 min exposure, however there was no co-localisation at 10, 20 and 30 min exposure. In OK cells, acute exposure to leptin for 2 h did not alter NHE3, ClC-5, NHERF1 and NHERF2 mRNA. However, acute leptin exposure increased NHERF2 protein expression in proximal tubule cells. In OK cells, immunoprecipitation experimentation indicated leptin did not bind to ClC-5. Leptin uptake in OK cells was enhanced by bafilomycin and ammonium chloride treatment, demonstrating that uptake was not dependent on lysosomal pH. Thus, it is likely that two pools of megalin exist in proximal tubule cells to facilitate separate uptake of leptin and albumin by endocytosis.  相似文献   

19.
A study was conducted to elucidate hormonal control of leptin receptor gene expression in primary cultures of porcine hepatocytes. Hepatocytes were isolated from swine and seeded into T-25 flasks. Cultures were established in medium containing fetal bovine serum for one day and switched to serum-free medium (William's E medium and 1 ng/mL insulin) for the remainder of the 3 d culture period. For the final 24 h, medium was supplemented with porcine growth hormone (GH, 100 or 500 ng/mL), insulin-like growth factor 1 (IGF-1, 50 to 250 ng/mL) or triiodothyronine (T3, 100 ng/mL). RNA was extracted and relative quantitative RT-PCR was performed with primers for long form leptin receptor. Receptor expression was calculated relative to 18S rRNA. Insulin had no effect (P > 0.05), while T3 increased leptin receptor mRNA abundance (P < 0.05). Treatment with GH or IGF-I reduced leptin receptor expression (P < 0.05). Phosphorylation of ERK1/2 in response to acute leptin treatment was inhibited by previous exposure to GH or IGF-I. Hepatocytes secreted IGF-I under basal conditions and this was enhanced by GH addition. These data suggest porcine hepatocytes may be less sensitive to leptin stimulation due to the actions of endogenous IGF-I on leptin receptor expression.  相似文献   

20.
Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on RSNA versus pre-ASNA support the hypothesis that these receptor subtypes are differentially located/expressed on NTS neurons/neural terminals controlling different sympathetic outputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号