首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduced previously an on-line resource, RANKPEP that uses position specific scoring matrices (PSSMs) or profiles for the prediction of peptide-MHC class I (MHCI) binding as a basis for CD8 T-cell epitope identification. Here, using PSSMs that are structurally consistent with the binding mode of MHC class II (MHCII) ligands, we have extended RANKPEP to prediction of peptide-MHCII binding and anticipation of CD4 T-cell epitopes. Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can be targeted for peptide binding predictions in RANKPEP. Because appropriate processing of antigenic peptides must occur prior to major histocompatibility complex (MHC) binding, cleavage site prediction methods are important adjuncts for T-cell epitope discovery. Given that the C-terminus of most MHCI-restricted epitopes results from proteasomal cleavage, we have modeled the cleavage site from known MHCI-restricted epitopes using statistical language models. The RANKPEP server now determines whether the C-terminus of any predicted MHCI ligand may result from such proteasomal cleavage. Also implemented is a variability masking function. This feature focuses prediction on conserved rather than highly variable protein segments encoded by infectious genomes, thereby offering identification of invariant T-cell epitopes to thwart mutation as an immune evasion mechanism.  相似文献   

2.
Major histocompatibility complex class I (MHCI) and class II (MHCII) molecules display peptides on antigen-presenting cell surfaces for subsequent T-cell recognition. Within the human population, allelic variation among the classical MHCI and II gene products is the basis for differential peptide binding, thymic repertoire bias and allograft rejection. While available 3D structural analysis suggests that polymorphisms are found primarily within the peptide-binding site, a broader informatic approach pinpointing functional polymorphisms relevant for immune recognition is currently lacking. To this end, we have now analyzed known human class I (774) and class II (485) alleles at each amino acid position using a variability metric (V). Polymorphisms (V>1) have been identified in residues that contact the peptide and/or T-cell receptor (TCR). Using sequence logos to investigate TCR contact sites on HLA molecules, we have identified conserved MHCI residues distinct from those of conserved MHCII residues. In addition, specific class II (HLA-DP, -DQ, -DR) and class I (HLA-A, -B, -C) contacts for TCR binding are revealed. We discuss these findings in the context of TCR restriction and alloreactivity.  相似文献   

3.
The concept of peptide‐based vaccines against cancer has made noteworthy progress. Metadherin (MTDH) overexpression and its role in the development of diverse cancers make it an attractive target for cancer immunotherapy. In the current study, six different T cell epitope prediction tools were run to identify MTDH peptides with multiple immunogenic regions. Further, molecular docking was performed to assess HLA‐peptide binding interactions. Nine and eleven peptides fragments containing multiple CD8 + and CD4 + T‐cell epitopes, ranging from 9 to 20 amino acids, respectively, were obtained using a consensus immunoinformatics approach. The three peptides that were finally identified as having overlapping CD4 + and CD8 + T‐ cell epitopes are ARLREMLSVGLGFLRTELG, FLLGYGWAAACAGAR, YIDDEWSGLNGLSSADP. These peptides were found to not only have multiple T cell epitopes but also to have binding affinity with wide HLA molecules. A molecular docking study revealed that the predicted immunogenic peptides (with single or multiple T cell epitopes) of MTDH have comparable binding energies with naturally bound peptides for both HLA classes I and II. Thus, these peptides have the potential to induce immune responses that could be considered for developing synthetic peptide vaccines against multiple cancers.  相似文献   

4.
Characterization of the peptide‐binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA‐2*0401 molecule based on a positional scanning combinatorial peptide library approach. By combining this binding motif with data achieved by applying the NetMHCpan peptide prediction algorithm to both SLA‐1*0401 and SLA‐2*0401, we identified high‐affinity binding peptides. A total of 727 different 9mer and 726 different 10mer peptides within the structural proteins of foot‐and‐mouth disease virus (FMDV), strain A24 were analyzed as candidate T‐cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA‐1*0401 and SLA‐2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted FMDV peptides bound to SLA‐2*0401, whereas five of the nine predicted FMDV peptides bound to SLA‐1*0401. These methods provide the characterization of T‐cell epitopes in response to pathogens in more detail. The development of such approaches to analyze vaccine performance will contribute to a more accelerated improvement of livestock vaccines by virtue of identifying and focusing analysis on bona fide T‐cell epitopes.  相似文献   

5.
The immune system has evolved the ability for T cells to recognize nearly any biological polymer, including peptides, protein superantigens, and glycolipids through presentation by the major histocompatibility complex (MHC) proteins such as MHC class I (MHCI), MHC class II (MHCII), and CD1. A recent and unexpected addition to this list is the zwitterionic capsular polysaccharide (ZPS). These bacterial molecules utilize MHCII presentation to activate T cells via recognition by alphabeta T cell receptor (alphabetaTCR) proteins. In this review, we explore what is currently known about ZPS processing and presentation within antigen-presenting cells (APCs) and the immune response that follows.  相似文献   

6.
A new method for the simultaneous detection of rotational mobility and proximity of cell surface receptors is presented based on cell-by-cell basis measurement of polarized fluorescence intensity components of the donor and acceptor of a FRET system. In addition to the FRET efficiency and the donor and acceptor concentrations, the method makes also possible the determination of the rotational characteristics and the associated fraction of the donors (FRET-fraction). The method is illustrated with flow cytometric and rFLIM measurements on donor–acceptor systems comprising fluorescently labeled whole antibodies and their Fab fragments against epitopes of the MHCI and MHCII cell surface receptors on human lymphoblast cells. Fluorescence anisotropy of donor and acceptor and FRET efficiency were measured for samples of different acceptor-to-donor concentration ratios. Acceptor anisotropy proved to be more sensitive than the donor anisotropy for sensing FRET. After determining the rotational constants of the donor-conjugated antibodies by measurements of FRET in the steady state, and by rFLIM as a reference, the associated fractions of the MHCI and MHCII molecules in their clusters were determined. Besides the flow cytometer and the wide-field rFLIM used in this study, the method can be applied also in other devices capable of dual-anisotropy detection.  相似文献   

7.
8.
The identification of HIV-1 cytotoxic T lymphocyte (CTL) epitopes presented by each HLA allele and the characterization of their CTL responses are important for the study of pathogenesis of AIDS and the development of a vaccine against it. In the present study, we focused on identification and characterization of HIV-1 epitopes presented by HLA-B*5401, which is frequently found in the Asian population, because these epitopes have not yet been reported. We identified these epitopes by using 17-mer overlapping peptides derived from HIV-1 Gag, Pol, and Nef. Seven of these 17-mer peptides induced HLA-B*5401-restricted CD8+ T cell responses. Only five HLA-B*5401-restricted Pol- or Nef-specific CD8+ T cell responses were detected in the analysis using 11-mer overlapping peptides. Three Pol and two Nef optimal peptides were identified by further analysis using truncated peptides. These epitope-specific CTLs effectively killed HLA-B*5401-expressing target cells infected with HIV-1 recombinant vaccinia virus, indicating that these peptides were naturally processed by HLA-B*5401 in HIV-1-infected cells. These epitope-specific CD8+ T cells were elicited in more than 25% of chronically HIV-1-infected individuals carrying HLA-B*5401. Therefore, these epitopes should prove useful for studying the pathogenesis of AIDS in Asia and developing a vaccine against HIV-1.  相似文献   

9.
The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis.  相似文献   

10.
Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous antigenic peptides to cognate T cell receptors of CD4-T lymphocytes. The exact conformation of peptide–MHCII complexes (pMHCII) can vary depending on the length, register and orientation of the bound peptide. We have recently found the self-peptide CLIP (class‐II-associated invariant chain‐derived peptide) to adopt a dynamic bidirectional binding mode with regard to the human MHCII HLA-DR1 (HLA, human leukocyte antigen). We suggested that inversely bound peptides could activate specific T cell clones in the context of autoimmunity. As a first step to prove this hypothesis, pMHC complexes restricted to either the canonical or the inverted peptide orientation have to be constructed. Here, we show that genetically encoded linkage of CLIP and two other antigenic peptides to the HLA-DR1 α-chain results in stable complexes with inversely bound ligands. Two‐dimensional NMR and biophysical analyses indicate that the CLIP-bound pMHCinv complex (pMHCinv, inverted MHCII–peptide complex) displays high thermodynamic stability but still allows for the exchange against higher‐affinity viral antigen. Complemented by comparable data on a corresponding β-chain-fused canonical HLA-DR1/CLIP complex, we further show that linkage of CLIP leads to a binding mode exactly the same as that of the corresponding unlinked constructs. We suggest that our approach constitutes a general strategy to create pMHCinv complexes. Such engineering is needed to create orientation-specific antibodies and raise T cells to study phenomena of autoimmunity caused by isomeric pMHCs.  相似文献   

11.
Developing a vaccine that will stimulate broad HIV-specific T cell responses is difficult because of the variability in HIV T cell epitope sequences, which is in turn due to the high mutation rate and consequent strain diversity of HIV-1. We used a new Class II version of the EpiMatrix T cell epitope-mapping tool and Conservatrix to select highly conserved and promiscuous Class II HLA-restricted T cell epitopes from a database of 18,313 HIV-1 env sequences. Criteria for selection were: (1) number of HIV-1 strains represented as measured by Conservatrix; (2) EpiMatrix score; and (3) promiscuity (number of unique MHC motifs contained in the peptide). Using another vaccine design tool called the EpiAssembler, a new set of overlapping, conserved and immunogenic HIV-1 peptides were engineered creating extended "immunogenic consensus" sequences. Each overlapping 9-mer of the 20-23 amino acid long immunogenic consensus peptides was conserved in a large number (range 893-2254) of individual HIV-1 strains, although the novel peptides were not representative of any single strain of HIV. We synthesized nine representative peptides. T helper cell responses to the peptides were evaluated by ELISpot (gamma-interferon) assay, using peripheral blood monocytes (PBMC) obtained from 34 healthy long term non-progressor (LT) or moderate-progressor (MP) donors (median years infected = 8.88, median CD4 T cells = 595, median VL = 1044). Nine peptides were tested, of which eight were confirmed in ELISpot assays using PBMC from the LT/MP subjects. These epitopes were ranked by Conservation and EpiMatrix score 1, 2, 3, 5, 7, 11, and 14 out of the set of 9 original peptides. Five of these peptides were selected for inclusion in an epitope-driven cross-clade HIV-1 vaccine (the GAIA vaccine). These data confirm the utility of bioinformatics tools to select and construct novel "immunogenic consensus sequence" T cell epitopes for a globally relevant vaccine against HIV.  相似文献   

12.
Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and β duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the β duplication block. Our results indicate that MHCI genes in the κ and β duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat‐specific three‐ or five‐amino‐acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide‐binding groove, as previously assayed by a bat MHCI gene with a three‐amino‐acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon‐specific manner.  相似文献   

13.
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.  相似文献   

14.
Schistosomiasis is the second leading cause of death due to parasitic diseases in the world. Seeking an alternative for the control of disease, the World Health Organization funded the genome sequencing of the major species related to schistosomiasis to identify potential vaccines and therapeutic targets. Therefore, the aim of this work was to select T and B‐cell epitopes from Schistosoma mansoni through computational analyses and evaluate the immunological potential of epitopes in vitro. Extracellular regions of membrane proteins from the Schistosoma mansoni were used to predict promiscuous epitopes with affinity to different human Major Histocompatibility Class II (MHCII) molecules by bioinformatics analysis. The three‐dimensional structure of selected epitopes was constructed and used in molecular docking to verify the interaction with murine MHCII H2‐IAb. In this process, four epitopes were selected and synthesized to assess their ability to stimulate proliferation of CD4+ T lymphocytes in mice splenocyte cultures. The results showed that Sm041370 and Sm168240 epitopes induced significant cell proliferation. Additionally, the four epitopes were used as antigens in the Indirect Enzyme‐Linked Immunosorbent Assay (ELISA) to assess the recognition by serum from individuals infected with Schistosoma mansoni. Sm140560, Sm168240, and Sm041370 epitopes were recognized by infected individuals IgG antibodies. Therefore, Sm041370 and Sm168240 epitopes that stood out in in silico and in vitro analyses could be promising antigens in schistosomiasis vaccine development or diagnostic kits. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:804–814, 2017  相似文献   

15.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

16.
Polysaccharide processing and presentation by the MHCII pathway   总被引:9,自引:0,他引:9  
Cobb BA  Wang Q  Tzianabos AO  Kasper DL 《Cell》2004,117(5):677-687
The adaptive immune system functions through the combined action of antigen-presenting cells (APCs) and T cells. Specifically, class I major histocompatibility complex antigen presentation to CD8(+) T cells is limited to proteosome-generated peptides from intracellular pathogens while the class II (MHCII) endocytic pathway presents only proteolytic peptides from extracellular pathogens to CD4(+) T cells. Carbohydrates have been thought to stimulate immune responses independently of T cells; however, zwitterionic polysaccharides (ZPSs) from the capsules of some bacteria can activate CD4(+) T cells. Here we show that ZPSs are processed to low molecular weight carbohydrates by a nitric oxide-mediated mechanism and presented to T cells through the MHCII endocytic pathway. Furthermore, these carbohydrates bind to MHCII inside APCs for presentation to T cells. Our observations begin to elucidate the mechanisms by which some carbohydrates induce important immunologic responses through T cell activation, suggesting a fundamental shift in the MHCII presentation paradigm.  相似文献   

17.
No vaccine is yet available against serogroup B meningococci, which are a common cause of bacterial meningitis. Some outer membrane proteins (OMP), LPS, and capsular polysaccharides have been identified as protective Ag. The amino acid sequence of the protective B cell epitopes present within the class 1 OMP has been described recently. Synthetic peptides containing OMP B cell epitopes as well as capsular polysaccharides or LPS protective B cell epitopes have to be presented to the immune system in association with T cell epitopes to achieve an optimal Ir. The use of homologous, i.e., meningococcal, T cell epitopes has many advantages. We therefore investigated recognition sites for human T cells within the meningococcal class 1 OMP. We have synthesized 16 class 1 OMP-derived peptides encompassing predicted T cell epitopes. Peptides corresponding to both surface loops and trans-membrane regions (some of which occur as amphipathic beta-sheets) of the class 1 OMP were found to be recognized by T cells. In addition, 10 of 11 peptides containing predicted amphipathic alpha-helices and four of five peptides containing T cell epitope motifs according to Rothbard and Taylor (Rothbard, J. B., and W. R. Taylor. 1988. EMBO J 7:93) were recognized by lymphocytes from one or more volunteers. Some of the T and B cell epitopes were shown to map to identical regions of the protein. At least six of the peptides that were found to contain T cell epitopes show homology to constant regions of the meningococcal class 3 OMP and the gonococcal porins PIA and PIB. Peptide-specific T cell lines and T cell clones were established to investigate peptide recognition in more detail. The use of a panel of HLA-typed APC revealed clear HLA-DR restriction patterns. It seems possible now to develop a (semi-) synthetic meningococcal vaccine with a limited number of constant T cell epitopes that cover all HLA-DR locus products.  相似文献   

18.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

19.
Knowing the abundance of peptides presented by MHC molecules is a crucial aspect for understanding T cell activation and tolerance. In this report we determined the relative abundance of four distinct peptide families after the processing of the model Ag hen egg-white lysozyme. The development of a sensitive immunochemical approach reported here made it possible to directly quantitate the abundance of these four epitopes presented by APCs, both in vitro and in vivo. We observed a wide range of presentation among these four different epitopes presented on the surface of APCs, with 250-fold differences or more between the most abundant epitope (48-63) and the least abundant epitopes. Importantly, we observe similar ratios of presentation from APCs in vitro as well as from APCs from the spleens and thymi of hen egg-white lysozyme transgenic mice. We discuss the relationship between the amount of peptide presented and their binding to I-A(k) molecules, immunogenicity, and tolerogenicity.  相似文献   

20.
Type 1 diabetes is an autoimmune disease characterized by T cell responses to β cell Ags, including insulin. Investigations employing the NOD mouse model of the disease have revealed an essential role for β cell-specific CD8(+) T cells in the pathogenic process. As CD8(+) T cells specific for β cell Ags are also present in patients, these reactivities have the potential to serve as therapeutic targets or markers for autoimmune activity. NOD mice transgenic for human class I MHC molecules have previously been employed to identify T cell epitopes having important relevance to the human disease. However, most studies have focused exclusively on HLA-A*0201. To broaden the reach of epitope-based monitoring and therapeutic strategies, we have looked beyond this allele and developed NOD mice expressing human β(2)-microglobulin and HLA-A*1101 or HLA-B*0702, which are representative members of the A3 and B7 HLA supertypes, respectively. We have used islet-infiltrating T cells spontaneously arising in these strains to identify β cell peptides recognized in the context of the transgenic HLA molecules. This work has identified the insulin C-peptide as an abundant source of CD8(+) T cell epitopes. Responses to these epitopes should be of considerable utility for immune monitoring, as they cannot reflect an immune reaction to exogenously administered insulin, which lacks the C-peptide. Because the peptides bound by one supertype member were found to bind certain other members also, the epitopes identified in this study have the potential to result in therapeutic and monitoring tools applicable to large numbers of patients and at-risk individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号