首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The biodiversity and spatial distribution of macrofauna biomass are studied for 12 sites of stonesand littoral in the Neva Estuary in 2002–2005. The highest biodiversity has been observed for chironomids and oligochaetes in the Neva Bay (36% and 24% of total species number) and in the eastern Gulf of Finland (33% and 23%). Amphipods (≤89%), molluscs (≤61%), and chironomids (≤37%) dominate by biomass. The biomass spatial distribution vary dramatically from 9 to 37 g m−2 in the freshwater Neva Bay and from 1 to 68 g m−2 for the other Neva Estuary areas. The bottom fauna biomass in the Neva Bay is significantly lower than in the 1980–1990’s and constitutes 20–50% of the biomass previously observed. We explain such a significant decrease by a reduction of the insects and aborigine crustaceans Gammarus lacustris Sars and Asellus aquaticus L. The invasive amphipod species Gmelinoides fasciatus (Stebbing) dominated by biomass for the study period (3.8–15.6 g m−2, or >30% of total macrozoobenthos biomass).  相似文献   

2.
《水生昆虫》2012,34(2):139-155
In the Volga Basin, the small Baikalian amphipod Gmelinoides fasciatus was introduced in 1965 into the Gorky reservoir in order to enhance fish production; it appeared in 1986 in the Rybinsk reservoir and we recorded it during monitoring activities in 2006 at Tver. In total, at the monitoring site Tver/Migalovo 69 benthic invertebrate taxa were identified. We compared data from three summer seasons. During summer low flow period Gmelinoides fasciatus did not exceed a share of 12.6% considering individual (ind) densities (mean abundance 165 ± 104 ind m?2) and 14.2% considering biomass (mean biomass 0.39 ± 0.44 g m?2). Abundances and biomass of G. fasciatus were shown to be stable over three years and no increase was observed. The monthly dataset (March–November 2008) revealed dynamics in relation to the native benthic communities and it was shown that the maximal densities of Gmelinoides did not exceed 587 ind m–2. Understanding the effects on benthic communities caused by the invasive amphipod Gmelinoides fasciatus is crucial in order to predict further developments in European inland waters and to establish management strategies.  相似文献   

3.
Gibel carp Carassius gibelio (Bloch) was first introduced into fish ponds and small lakes of Estonia in 1948–49, and first detected in Estonian brackish waters (Gulf of Riga) in 1985. Since the mid‐1990s, the species has spread along the entire Estonian Baltic coastline. Growth rate in the brackish water population does not differ much from freshwater populations, but the freshwater populations are gynogenetic (or show high dominance of females) in contrast to the Baltic Sea population, which presents a normal sex ratio. The recent explosion of this species in the Baltic Sea could be explained by unusually warm summers during the 1990s and by the low abundance of predatory fish.  相似文献   

4.
Since the middle of the 20th century, six species of Ponto-Caspian amphipods (Chaetogammarus ischnus, C. warpachowskyi, Chelicorophium curvispinum, Dikerogammarus haemobaphes, Obesogammarus crassus, Pontogammarus robustoides), one Baikalian amphipod Gmelinoides fasciatus and one amphipod of Atlantic origin Gammarus tigrinus have expanded in Russia and adjacent regions. A wide variety of human mediated vectors such as deliberate and accidental introductions, natural migration via constructed inland waterways and high rates of spread, survival and reproduction in these species have facilitated rapid dispersal and successful establishment of these alien species. Causes of successful establishment of these invaders and potential consequences of the invasions including extinctions of native species in rivers, lakes and estuaries of north-western Russia are discussed.  相似文献   

5.
Using the data on 71 individual sequences of the gene for the mitochondrial cytochrome-c-oxidase subunit one, molecular and phylogenetic characterization of the Baikalian amphipod, Gmelinoides fasciatus (Crustacea, Amphipoda), was performed. Interspecific polymorphism was demonstrated. Four main amphipod populations, Southeastern, Southwestern, Northern, and Central, were distinguished. A low level of genetic diversity typical of Southwestern population was revealed. For its explanation, the bottleneck hypothesis was proposed.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1108–1114.Original Russian Text Copyright © 2005 by Gomanenko, Kamaltynov, Kuzmenkova, Berenos, Sherbakov.  相似文献   

6.
The feeding of the Baikal invader Gmelinoiudes fasciatus (Stebbing, 1899) in Lake Ladoga has been studied based on field and experimental data. The food spectrum of this amphipod was revealed; it includes many plant and animal species. Differences in the feeding of G. fasciatus living in different littoral biotopes were shown. The ecological and physiological rations of this species were determined. The effect that the bottom substrate has on the feeding rate of the amphipod was estimated. The introduction of G. fasciatus into Lake Ladoga provided a more adequate utilization of the energy accumulated by the primary producers and its transfer to higher trophic levels. This Baikal amphipod occupied a niche that had been, in effect, vacant. This made the invader capable of maintaining the quantitative parameters of its population at a very high level, and it largely reorganized the flow of matter and energy in the littoral zone of the lake.  相似文献   

7.
Lappalainen  Antti  Westerbom  Mats  Vesala  Sami 《Hydrobiologia》2004,514(1-3):87-92
The blue mussel (Mytilus edulis) is one of the key species in the Baltic Sea ecosystem and it is living at the edge of its range in the western Gulf of Finland. Roach (Rutilus rutilus) is a freshwater fish species that has benefited from recent coastal eutrophication and is at present highly abundant in the outer archipelago of the Gulf of Finland. In 2000 and 2001, a total of 516 roach were sampled for diet analysis in three study areas. Shelled molluscs formed over 95% of the diet of roach, blue mussels being the dominant single species. The proportion of this species in the food of roach in the three study areas ranged between 38–61% for smaller roach (<225 mm) and 39–85% for larger (>225 mm) roach, indicating that blue mussel is a highly important food source for roach in outer archipelago areas of the western Gulf of Finland, in contrast to reports from other parts of the northern Baltic Sea. The scarcity of large blue mussels in mussel beds in the easternmost study area was reflected in the lower proportion of blue mussels in the diet of larger roach. However, the growth of roach was not affected by the availability of blue mussels. The twofold differences observed in the annual growth of roach between warm and cold years demonstrated that temperature is an important factor controlling the growth of roach in the western Gulf of Finland.  相似文献   

8.
The study is based on multi-year monthly and yearly averaged time series of the Neva River discharge, monthly salinity observations from near-shore hydrographic and hydrometeorological stations in the Gulf of Finland, and several years of data from international seasonal salinity observations in the open region of NE Baltic Sea. There is a good coherence between seasonal variations of the Neva River flow and the salinity regime in the upper layer of the Baltic Sea. Near the shores periods of low, normal and high salinity correspond to the periods of high, normal and low river runoff, and the same trends are observed with some time lag in the open parts of the Sea as well. The impacts of the Neva River discharge oscillations on salinity of the Gulf of Finland surface waters are analyzed in terms of time regression probability models. The obtained river flow-marine salinity transfer functions summarize well the observation data on both multiannual and seasonal scales of variability. Some seasonal periods with different anomalies of the influence are distinguished.  相似文献   

9.
Model experiments on a possibility that pathogenic enterobacteria Salmonella enteritidis (Gartneri) can grow on decaying algal mats with prevalence of the filamentous algae Cladophora glomerata (L.) Kütz were carried out. Samples of algal mats have been collected in the eastern part of the Gulf of Finland in the Baltic Sea. A bacterial culture of Salmonella enteritidis was placed into tubes containing samples of mats. The intensive growth of salmonella was noted in alga samples collected in the freshwater zone (salinity 0.2–1.5‰); growth was practically absent in the samples of algae collected in a zone with salinity 2–3‰, while salmonella remained viable in the control tubes with water without algae. The growth of coliform enterobacteria initially inhabited in the algal mats was discovered in all experiments. Studies carried out in 2009 show that the thickness of the algal mats in the costal zones of the Gulf of Finland reached 20 cm and their biomass reached a few tons per 1 km2. These experiments showed that dead algal mats stimulate the growth of enterobacteria in the littoral zone of the Baltic Sea, especially in the freshwater part, and can promote the development of these pathogenic microorganisms.  相似文献   

10.
A comparative study of species composition, abundance and spatial distribution of the rotifers of Neva Bay (Gulf of Finland, Baltic Sea), between 1982–1993, was carried out. The rotifer fauna in the central basin of Neva Bay is determined by and originates in Lake Ladoga and is very similar to that of the Neva River. High turbidity and effect of winds affecting water residence time influence composition and density of rotifers in this shallow estuary. The importance of rotifer assemblages for evaluation of the quality of the estuary is discussed.  相似文献   

11.
Visual-pigment absorbance spectra and eye spectral sensitivities were examined in eight populations of opossum shrimp from different light environments. Four Finnish populations, two from the Baltic Sea and two from freshwater lakes, represent Mysis relicta, sensu stricto. The sibling species M. salemaai and M. diluviana are represented by, respectively, two Baltic Sea populations and two populations from freshwater lakes in Idaho, USA. In M. relicta, the visual pigments of the two lake populations were similar (λmax=554.3±0.8 nm and 556.4±0.4 nm), but significantly red-shifted compared with the sea populations (at 529 and 535 nm) and with M. salemaai (at 521 and 525 nm). All these pigments had only A2 chromophore and the lake/sea difference indicates adaptive evolution of the opsin. In M. diluviana, λmax varied in the range 505–529 nm and the shapes of spectra suggested varying A1/A2 chromophore proportions, with pure A1 in the 505 nm animals. Eye sensitivity spectra were flatter and peaked at longer wavelengths than the relevant visual-pigment templates, but declined with the same slope beyond ca. 700 nm. The deviations from visual-pigment spectra can be explained by ocular light filters based on three types of identified screening pigments.  相似文献   

12.
In the eastern Baltic rivers, anadromous salmonid parr are known to smoltify and migrate to the sea from March until June, depending on latitude, climate and hydrological conditions. In this study, we present the first records of autumn descent of brown trout Salmo trutta and Atlantic salmon Salmo salar from the Baltic Sea Basin. Otolith microchemistry analyses revealed that these individuals hatched in freshwater and had migrated to the brackish water shortly prior to capture. The fish were collected in 2006, 2008, 2009 and 2013 from Eru Bay (surface salinity 4.5–6.5 ‰), Gulf of Finland. This relatively wide temporal range of observations indicates that the autumn descent of anadromous salmonids is not a random event. These results imply that autumn descent needs more consideration in the context of the effective stock management, assessment and restoration of Baltic salmonid populations and their habitats.  相似文献   

13.
Vadim E. Panov 《Hydrobiologia》1996,322(1-3):187-192
Gmelinoides fasciatus Stebb., a small amphipod from the Lake Baikal basin, was discovered in July 1988 in Lake Ladoga, the largest European lake. G. fasciatus likely invaded Lake Ladoga as a consequence of its intentional introduction, aimed at enhancing fish production, in some Karelian Isthmus lakes close to Lake Ladoga's western shore in the early 1970's. Benthos studies conducted in 1989 and 1990 revealed that G. fasciatus was well established in littoral communities along the western and northern shores of Lake Ladoga. G. fasciatus was the dominant species in these littoral communities and contributed over 70% of the macroinvertebrate biomass. The species was abundant in different macrophyte beds and stony littoral areas, both in heavily polluted and undisturbed sites. The maximum abundance and biomass of G. fasciatus was about 54,000 ind m–2 and 160 g (wet wt.) m–2. Negative impacts of G. fasciatus on native species have been observed. Studies are needed to identify the effects of G. fasciatus on the functioning of littoral communities and to predict and control the spread of this amphipod.  相似文献   

14.
Aim Using data from field introduction experiments with Gammarus spp. conducted in the rivers of a small island, commencing in 1949, with resampling in the 60s, 70s, 80s, 90s and finally in 2005, we aimed to examine the long‐term interaction of the native freshwater amphipod Gammarus duebeni celticus with the introduced G. pulex. Using physico‐chemical data from a 2005 island‐wide survey, we also aimed to find what environmental factors could influence the distribution of the two species. Location The Isle of Man, British Isles. Methods We used species distribution data from 10 river sites from a field introduction study in 1949–69, resampling of these sites in 1974/5, 1988, 1995 and 2005. We sampled a further 82 sites in 2005, where physico‐chemical characteristics of each site were obtained. ANOVA was used to ascertain significant differences in environmental variables between native and introduced amphipod assemblages. Multiple discriminant analysis was used to relate Gammarus distribution to environmental gradients in rivers. Results Field introductions of G. pulex into previously G. d. celticus dominated sites failed, despite the large propagule pressure in terms of numbers of individuals released and repeated introductions. The island‐wide survey revealed that G. d. celticus was found in areas of higher water quality than G. pulex. Sites where the two species co‐occurred also tended to be of lower water quality than native only sites. Continuing metal pollution from past mining activity may be a major factor excluding all amphipods from many rivers. The North American amphipod Crangonyx pseudogracilis, which was first discovered on the Isle of Man in one river site in 1995, was found in a further five sites. Main conclusions This ecological experiment, through long‐term monitoring, thus continues to elucidate factors influencing the distributions of introduced and native species. Under some physicochemical regimes, G. d. celticus is able to withstand its usual displacement by G. pulex, whereas increased river pollution could promote replacement of the native by the introduced species.  相似文献   

15.
The potentially toxic dinoflagellate Prorocentrum minimum (Pavillard) Schiller has successfully established in the Baltic Sea in the last two decades. A review of the invasion history is presented as well as new data on the spatial and inter-annual variability of this species and its relation to salinity, temperature, and nutrient concentrations. A short literature review of the morphological characters of the Baltic P. minimum is also included.From 1993 to 2002, P. minimum was a regular component of the summer and autumn plankton flora of the Baltic Sea proper and the Gulf of Finland. Its abundance varied considerably inter-annually and did not show any clear trends during the period. Abundance of P. minimum was significantly higher in the nutrient-enriched Bay of Mecklenburg (German coast) and the southern Baltic proper than in the central and northern Baltic proper and the Gulf of Finland, where its abundance was mostly sparse. In coastal waters P. minimum occasionally reached densities of several million cells per litre and dominated phytoplankton biomass (>90%).Abundance of the Baltic P. minimum was generally not related to salinity or temperature. It could be a dominant species at both high and low salinity (over 15 and 4.8 PSU), and its temperature range was broad (from 2.7 to 26.4 °C). However, dense populations usually occurred from July to October at temperatures above 10 °C.Further, there appears to be a positive correlation between the success of P. minimum in the Baltic Sea and high concentrations of total phosphorus and nitrogen.This tolerant and morphologically variable dinoflagellate seems to be a morphospecies without subtaxa, which can expand its range in the Baltic Sea, especially in nutrient-rich coastal waters.  相似文献   

16.
The trophic status of the eastern Gulf of Finland, where the largest Baltic metropolis St. Petersburg sits at the mouth of the largest Baltic river Neva, is elevated but existing recommendations on water protection measures are controversial. In this study, the effects of nutrient load reductions on this ecosystem were estimated with the aid of a three-dimensional coupled hydrodynamic-biogeochemical model. As a reference, the contemporary seasonal dynamics were simulated with nutrient inputs corresponding to the recent estimates of point and riverine sources. In order to eliminate the effects of natural inter-annual variations, the computations were run under recurrent annual forcing for 3 years, until quasi steady-state seasonal dynamics were reached. Reasonable comparability of simulated concentrations and biogeochemical fluxes to available field estimates provides credibility to scenario simulations. These simulations show that substantial reductions of nutrient point sources in St. Petersburg would affect only the Neva Bay as the immediate receptor of treated sewage waters, where primary production could decrease by up to 20%. Eutrophication in the other parts of the Neva Estuary and in the entire eastern Gulf of Finland would change insignificantly owing to increased nutrient import from the offshore waters. Therefore, more significant changes can occur only via a reduction in nutrient pools in the open Gulf of Finland and the Baltic Proper, which would require a longer time. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

17.
Marine invasions are taking place at an increasing rate. When occurring in blooms, zooplanktivorous comb jellies of the genus Mnemiopsis are able to cause pelagic regime shifts in coastal areas and may cause the collapse of commercially important fish populations. Using microsatellites, developed for the first time in the phylum Ctenophora, we show that Mnemiopsis leidyi has colonized Eurasia from two source regions. Our preliminary data set included four sites within the putative source region (US East Coast and Gulf of Mexico) and 10 invaded locations in Eurasian waters. Bayesian clustering and phylogeographic approaches revealed the origin of earlier invasions of the Black and Caspian Sea in the 1980s/1990s within or close to the Gulf of Mexico, while the 2006 invasion of the North and Baltic Seas can be directly traced to New England (pairwise FST = 0). We found no evidence for mixing among both gene pools in the invaded areas. While the genetic diversity (allelic richness) remained similar in the Baltic Sea compared to the source region New England, it was reduced in the North Sea, supporting the view of an initial invasion of Northern Europe to a Baltic Sea port. In Black and Caspian Sea samples, we found a gradual decline in allelic richness compared to the Gulf of Mexico region, supporting a stepping‐stone model of colonization with two sequential genetic founder events. Our data also suggest that current practices of ballast water treatment are insufficient to prevent repeated invasions of gelatinous zooplankton.  相似文献   

18.
The susceptibility and resistance of hatchery-reared salmon parr, native to the rivers Neva (U.S.S.R. Baltic Sea), Alta (northern Norway) and Lone (western Norway) (both eastern Atlantic Ocean), to Gyrodactylus salaris from Norway, was examined. The level of resistance to the parasite was assessed from counts, made on anaesthetized salmon, ofthe numbers of G. salaris after an initial experimental exposure (2 weeks) to G. salaris-infected salmon. Three experiments, all in water at c. 12° C, were carried out: (1) 50 Alta and 50 Neva salmon, initial mean parasite intensity c. 12; (2) 50 Lone and 50 Neva salmon, initial mean parasite intensity c. 60; (3) 10 Lone and 10 Neva salmon individually isolated, initial intensity one gravid G. salaris . In both the Norwegian salmon stocks, the G. salaris infrapopulations steadily increased during the experimental period of 5 weeks, in contrast to a prominent decline in the Neva salmon stock, after, respectively: (Exp. 1) week 3, average peak intensity 32.6; (Exp. 2) week 2, average peak intensity 58.7; and (Exp. 3) week 3, average peak intensity 6.3. The hatchery-reared Baltic Neva stock demonstrated both an innate and an acquired resistance towards G. salaris , in contrast to the highly susceptible, Norwegian Alta and Lone salmon stocks.  相似文献   

19.
Orlova  Marina I.  Panov  Vadim E. 《Hydrobiologia》2004,514(1-3):207-217
Hydrobiologia - The zebra mussel, Dreissena polymorpha (Pallas), has invaded the Neva Estuary (eastern Gulf of Finland) by mid 1980s. In order to assess the current status of the zebra mussel...  相似文献   

20.
T. Sörlin 《Aquatic Ecology》1982,16(2-3):287-288
Summary The Baltic Sea, one of the largest brackish water areas in the world, can be characterized as a young, cold sea containing an impoverished ecosystem due to salinity stress. The present Baltic Sea was formed as late as 2000 to 2500 years ago when the Danish sounds became more narrow and shallow. The inflow of freshwater from the surrounding land areas caused the Baltic to gradually attain its brackish character. Today the Baltic covers an area of some 366,000 km2 as a series of basins separated by shallower areas and filled with about 22,000 km3 of brackish water. These basins are, from north to south, the Gulf of Bothnia, the Gulf of Finland, the Gotland Sea and the Bornholm Sea. The climate gradient ranges from almost arctic conditions in the extreme north to a more maritime climate in the southern parts. The North Sea salt water is connected to the Baltic through the shallow Kattegat and the sills in the Danish sounds. The inflow of salt water occurs in two different ways,viz. as a continuous flow along the bottom due to the salinity gradient and as pulses of salt water generated by the distribution of air pressure and the direction of the wind. The freshwater input (500 km3) from mainly the large rivers equals roughly the net outflow and stresses the south-bound current along the Swedish coast that also compensates for the salt water inflow. Tidal movements can be seen in the southern Baltic, but are of minor importance for the system. The residence time of the total water mass is 25 years and the hydrographical conditions within the different basins are stable and dominated by a permanent halocline, and a thermocline developing every spring. The salinity ranges from about 1–2 per mille in the innermost part of the Gulf of Bothnia to 10–15 per mille in the Bornholm Sea. Total vertical mixing takes place during winter in at least the northern parts of the sea. Due to the climate-gradient, the ice condition differs from about four months of total ice-cover in the inner parts of the Gulf of Bothnia to one month or less of coastal ice in the southern part of the Baltic. Thus, the seasonal effect is more pronounced in the northern parts.The living systems of the Baltic are reduced and adapted to these varying conditions. When comparing the deeper soft bottoms of the Gulf of Bothnia to the rest of the Baltic, the following pattern can be seen. The pelagic primary productivity increases by a factor 6 from north to south. The southern parts of the sea show a pronounced spring peak, while in the north the spring development is delayed or replaced by a summer maximum. The total increase of the macrofauna biomass is striking, from about 1 g.m–2 (w.wt) in the north to 100 g.m–2 (w.wt) or more in the south. The meiofauna and the zooplankton biomasses show less variability. The meiofauna increases by a factor of 2–4, giving a biomass of about twice that of the macrofauna in the northernmost part. The extremely low salinity of this area causes the exclusion of bivalves (filter-feeders) from the fauna. Available data, pooled with the high metabolic rate of the meiofauna, roughly follow the changes in primary productivity within the Baltic Sea. The changing ratio of macro- to meiofauna, as well as results from intensive studies of the macrobenthic amphipodPontoporeia affinis (Lindström), suggest that the macrofauna is regulated mainly by food limitation and that the benthic and pelagic systems are closely coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号