首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F1-ATPase is a rotary molecular motor powered by the torque generated by another rotary motor F0 to synthesize ATP in vivo. Therefore elucidation of the behavior of F1 under external torque is very important. Here, we applied controlled external torque by electrorotation and investigated the ATP-driven rotation for the first time. The rotation was accelerated by assisting torque and decelerated by hindering torque, but F1 rarely showed rotations in the ATP synthesis direction. This is consistent with the prediction by models based on the assumption that the rotation is tightly coupled to ATP hydrolysis and synthesis. At low ATP concentrations (2 and 5 μM), 120° stepwise rotation was observed. Due to the temperature rise during experiment, quantitative interpretation of the data is difficult, but we found that the apparent rate constant of ATP binding clearly decreased by hindering torque and increased by assisting torque.  相似文献   

2.
An intrinsic ATPase inhibitor inhibits the ATP-hydrolyzing activity of mitochondrial F1F0-ATPase and is released from its binding site on the enzyme upon energization of mitochondrial membranes to allow phosphorylation of ADP. The mitochondrial activity to synthesize ATP is not influenced by the absence of the inhibitor protein. The enzyme activity to hydrolyze ATP is induced by dissipation of the membrane potential in the absence of the inhibitor. Thus, the inhibitor is not responsible for oxidative phosphorylation, but acts only to inhibit ATP hydrolysis by F1F0-ATPase upon deenergization of mitochondrial membranes. The inhibitor protein forms a regulatory complex with two stabilizing factors, 9K and 15K proteins, which facilitate the binding of the inhibitor to F1F0-ATPase and stabilize the resultant inactivated enzyme. The 9K protein, having a sequence very similar to the inhibitor, binds directly to F1 in a manner similar to the inhibitor. The 15K protein binds to the F0 part and holds the inhibitor and the 9K protein on F1F0-ATPase even when one of them is detached from the F1 part.  相似文献   

3.
The rotation of an asymmetric core of subunits in F0F1-ATP synthases has been proposed as a means of coupling the exergonic transport of protons through F0 to the endergonic conformational changes in F1 required for substrate binding and product release. Here we review earlier evidence both for and against subunit rotation and then discuss our most recent studies using reversible intersubunit disulfide cross-links to test for rotation. We conclude that the subunit of F1 rotates relative to the surrounding catalytic subunits during catalytic turnover by both soluble F1 and membrane-bound F0F1. Furthermore, the inhibition of this rotation by the modification of F0 with DCCD suggests that rotation in F1 is obligatorily coupled to rotation in F0 as an integral part of the coupling mechanism.  相似文献   

4.
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b N2A,T6A,Q10A subunit was also oxidative phosphorylation deficient, but the b N2A,T6A,Q10A protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.  相似文献   

5.
The a and b subunits constitute the stator elements in the F0 sector of F1F0-ATP synthase.Both subunits have been difficult to study by physical means, so most of the information onstructure and function relationships in the a and b subunits has been obtained using mutagenesisin combination with biochemical methods. These approaches were used to demonstrate thatthe a subunit in association with the ring of c subunits houses the proton channel throughF1F0-ATP synthase. The map of the amino acids contributing to the proton channel is probablycomplete. The two b subunits dimerize, forming an extended flexible unit in the peripheralstalk linking the F1 and F0 sectors. The unique characteristics of specific amino acid substitutionsaffecting the a and b subunits suggested differential effects on rotation during F1F0-ATPaseactivity.  相似文献   

6.
We designed a rotary biosensor as a damping effector, with the rotation of the F0F1-ATPase driven by Adenosine Triphosphate (ATP) synthesis being indicated by the fluorescence intensity and a damping effect force being induced by the binding of an RNA molecule to its probe on the rotary biosensor. We found that the damping effect could contribute to the resonance phenomenon and energy transfer process of our rotary biosensor in the liquid phase. This result indicates that the ability of the rotary motor to operate in the vibration harmonic mode depends on the environmental conditions and mechanism in that a few molecules of the rotary biosensor could induce all of the sensor molecules to fluoresce together. These findings contribute to the theory study of the ATPase motor and future development of biosensors for ultrasensitive detection.  相似文献   

7.
The regulation of membrane-bound proton F0F1ATPase by the protonmotive force and nucleotides was studied in yeastmitochondria. Activation occurred in whole mitochondria and the ATPaseactivity was measured just after disrupting the membranes with Triton X-100.Deactivation occurred either in whole mitochondria uncoupled with FCCP, or indisrupted membranes. No effect of Triton X-100 on the ATPase was observed,except a slow reactivation observed only in the absence of MgADP. BothAMPPNP and ATP increased the ATPase deactivation rate, thus indicating thatoccupancy of nucleotidic sites by ATP is more decisive than catalyticturnover for this process. ADP was found to stimulate the energy-dependentATPase activation. ATPase deactivated at the same rate in uncoupled anddisrupted mitochondria. This suggests that deactivation is not controlled byrebinding of some soluble factor, like IF1, but rather by the conversion ofthe F1.IF1 complex into an inactive form.  相似文献   

8.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

9.
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975).Biochemistry 14, 1727–1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984).Anal. Biochem. 142, 215–220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed aV max of 1.28mol min–1 mg–1, whereas theV max of the complex without the inhibitor was 8.3mol min–1 mg–1. In contrast, theK m for Mg-ATP of F0F1 I was 148M, comparable to theK m value of 142M of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60C at pH 6.8, reaching a maximal ATPase activity of 9.5mol min–1 mg–1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncouplerp-trifluoromethoxyphenylhydrazone.  相似文献   

10.
The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor’s rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.  相似文献   

11.
In liver mitochondria isolated from hypothyroid rats, the rate of ATP synthesis is lower than in mitochondria from normal rats. Oligomycin-sensitive ATP hydrolase activity and passive proton permeability were significantly lower in submitochondrial particles from hypothyroid rats compared to those isolated from normal rats. In mitochondria from hypothyroid rats, the changes in catalytic activities of F0F1-ATP synthase are accompanied by a decrease in the amount of immunodetected -F1, F01-PVP, and OSCP subunits of the complex. Northern blot hybridization shows a decrease in the relative cytosolic content of mRNA for -F1 subunit in liver of hypothyroid rats. Administration of 3,5,3-triodo-L-thyronine to the hypothyroid rats tends to remedy the functional and structural defects of F0F1-ATP synthase observed in the hypothyroid rats. The results obtained indicate that hypothyroidism leads to a decreased expression of F0F1-ATP synthase complex in liver mitochondria and this contributes to the decrease of the efficiency of oxidative phosphorylation.  相似文献   

12.
Atrazine is a widely used triazine herbicide. Although controversy still exists, a number of recent studies have described its adverse effects on various animals including humans. Of particular interest is its effects on reproductive capacity. In this study, we investigated the mechanisms underlying the adverse effects of atrazine, with a focus on its effects on sperm. Here we show evidence that mitochondrial F1F0-ATP synthase is a molecular target of atrazine. A series of experiments with sperm and isolated mitochondria suggest that atrazine inhibits mitochondrial function through F1F0-ATP synthase. Moreover, affinity purification using atrazine as a ligand demonstrates that F1F0-ATP synthase is a major atrazine-binding protein in cells. The inhibitory activity against mitochondria and F1F0-ATP synthase is not limited to atrazine but is likely to be applicable to other triazine-based compounds. Thus, our findings may have wide relevance to pharmacology and toxicology.  相似文献   

13.
Inverted membrane vesicles of Gram-positive actinobacteria Streptomyces fradiae, S. lividans, and S. avermitilis have been prepared and membrane-bound F0F1 ATP synthase has been biochemically characterized. It has been shown that the ATPase activity of membrane-bound F0F1 complex is Mg2+-dependent and moderately stimulated by high concentrations of Ca2+ ions (10–20 mM). The ATPase activity is inhibited by N,N′-dicyclohexylcarbodiimide and oligomycin A, typical F0F1 ATPase inhibitors that react with the membrane-bound F0 complex. The assay of biochemical properties of the F0F1 ATPases of Streptomycetes in all cases showed the presence of ATPase populations highly susceptible and insensitive to oligomycin A. The in vitro labeling and inhibitory assay showed that the inverted phospholipid vesicles of S. fradiae contained active membrane-bound Ser/Thr protein kinase(s) phosphorylating the proteins of the F0F1 complex. Inhibition of phosphorylation leads to decrease of the ATPase activity and increase of its susceptibility to oligomycin. The in vivo assay confirmed the enhancement of actinobacteria cell sensitivity to oligomycin after inhibition of endogenous phosphorylation. The sequencing of the S. fradiae genes encoding oligomycin-binding A and C subunits of F0F1 ATP synthase revealed their close phylogenetic relation to the genes of S. lividans and S. avermitilis.  相似文献   

14.
Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation.  相似文献   

15.
Myocardial ischemic preconditioning and mitochondrial F1F0-ATPase activity   总被引:1,自引:0,他引:1  
A short period of ischemia followed by reperfusion (ischemic preconditioning) is known to trigger mechanisms that contribute to the prevention of ATP depletion. In ischemic conditions, most of the ATP hydrolysis can be attributed to mitochondrial F1F0-ATPase (ATP synthase). The purpose of the present study was to examine the effect of myocardial ischemic preconditioning on the kinetics of ATP hydrolysis by F1F0-ATPase. Preconditioning was accomplished by three 3-min periods of global ischemia separated by 3 min of reperfusion. Steady state ATP hydrolysis rates in both control and preconditioned mitochondria were not significantly different. This suggests that a large influence of the enzyme on the preconditioning mechanism may be excluded. However, the time required by the reaction to reach the steady state rate was increased in the preconditioned group before sustained ischemia, and it was even more enhanced in the first 5 min of reperfusion (101 ± 3.0 sec in preconditioned vs. 83.4 ± 4.4 sec in controls, p 0.05). These results suggest that this transient increase in activation time may contribute to the cardioprotection by slowing the ATP depletion in the very critical early phase of post-ischemic reperfusion.  相似文献   

16.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

17.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

18.
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F1F0-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F1 and F0 sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F0 sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F0 sector, most likely mediated through altered protein—protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F1-33 hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur at a distance. We consider how subtle conformational changes in OSCP may be transmitted to F0.  相似文献   

19.
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits and of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% -helical together with 14% turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.  相似文献   

20.
Exchange-out of amide tritium from labeled -subunit of 33 complex of F0F1-ATP synthase was not accelerated by ATP, suggesting that hemagglutinin-type transition of coiled-coil structure did not occur in -subunit. Local topology of nucleotide binding site and switch II region of G-protein resemble those of F1- subunit and other proteins which catalyze ATP-triggered reactions. Probably, binding of nucleotide to F0F1-ATP synthase induces conformational change of the switch II-like region with transforming subunit structure from open to closed form and this transformation results in loss of hydrogen bonds with the subunit, thus enabling the subunit to move.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号