首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The presence of DNA topoisomerase IIalpha was investigated in interphase and metaphase mouse erythroleukemia (MEL) Friend-S cells, and in extracted with 25 mM lithium diiodosalicylate buffer (Lis) nuclei using indirect immunofluorescence. The results showed that DNA topoisomerase IIalpha is localised in the nuclei. In the metaphase cells, we found high concentrations of this enzyme in the mitotic chromosomes. Our results support the idea of the accumulation of DNA topoisomerase IIalpha at the end of the cell cycle. The extractions of nuclei with 25 mM Lis led to the complete depletion of DNA topoisomerase IIalpha from the residual nuclear matrix. Using a high dilution of the first antibody, we established that the high level of heterochromatin compactisation in the interphase nuclei is caused by the high concentration of DNA topoisomerase IIalpha.  相似文献   

2.
DNA topoisomerase II (Topo II) is an essential enzyme that catalyzes topological changes of DNA and consists of a major member of mitotic chromosomes. To investigate the dynamic localization of Topo II in nuclei, we engineered the strain of Aspergillus nidulans expressing Topo II fused with green fluorescent protein (GFP). Time-lapse microscopy revealed that the distribution of Topo II-GFP in nuclei varied depending on the cell cycle. In interphase, Topo II-GFP distributed evenly in the nucleoplasm and at the onset of G2 phase became concentrated into nucleolus. During mitosis, Topo II-GFP accumulated on chromosomes, when the chromosomes condensed. In the early mitosis, the Topo II also showed a single or two brighter spots among the fluorescence of clumped chromosomes. The spots once divided into several spots and then concentrated again into a spot per nucleus in the dividing nuclei of anaphase. Along with the subsequent decondensation of chromosomes, Topo II diffused back into nucleoplasm.  相似文献   

3.
Localization of topoisomerase II in mitotic chromosomes   总被引:60,自引:18,他引:42       下载免费PDF全文
In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are interspersed along the chromatin fiber from those that occupy restricted domains within the chromosome. These experiments indicate that the distribution of the enzyme appears to be independent of the bulk chromatin. Our data suggest that topoisomerase II is bound to the bases of the radial loop domains of mitotic chromosomes.  相似文献   

4.
DNA supercoiling factor (SCF) was first identified in silkworm as a protein that generates negative supercoils in DNA in conjunction with eukaryotic topoisomerase II. To analyze the in vivo role of the factor, we cloned a cDNA encoding Drosophila melanogaster SCF. Northern analysis revealed 1.6- and 1.8-kb mRNAs throughout development. The longer mRNA contains an open reading frame that shares homology with mouse reticulocalbin whereas the shorter one encodes a truncated version lacking the N-terminal signal peptide-like sequence. An antibody against SCF detected a 45-kDa protein in the cytoplasmic fraction and a 30-kDa protein in the nuclear fraction of embryonic extracts. Immunoprecipitation suggests that the 30-kDa protein interacts with topoisomerase II in the nucleus, and hence that it is a functional form of SCF. Immunostaining of blastoderm embryos showed that SCF is present in nuclei during interphase but is excluded from mitotic chromosomes. In larvae, the antibody stained the nuclei of several tissues including a posterior part of the salivary gland. This latter staining was associated with natural or ecdysteroid-induced puffs on polytene chromosomes. Upon heat treatment of larvae, the staining on the endogenous puffs disappeared, and strong staining appeared on heat shock puffs. These results implicate SCF in gene expression.  相似文献   

5.
Metaphase chromosome structure. Involvement of topoisomerase II   总被引:82,自引:0,他引:82  
SCI is a prominent, 170,000 Mr, non-histone protein of HeLa metaphase chromosomes. This protein binds DNA and was previously identified as one of the major structural components of the residual scaffold structure obtained by differential protein extraction from isolated chromosomes. The metaphase scaffold maintains chromosomal DNA in an organized, looped conformation. We have prepared a polyclonal antibody against the SC1 protein. Immunolocalization studies by both fluorescence and electron microscopy allowed identification of the scaffold structure in gently expanded chromosomes. The micrographs show an immunopositive reaction going through the kinetochore along a central, axial region that extends the length of each chromatid. Some micrographs of histone-depleted chromosomes provide evidence of the substructural organization of the scaffold; the scaffold appears to consist of an assembly of foci, which in places form a zig-zag or coiled arrangement. We present several lines of evidence that establish the identity of SC1 as topoisomerase II. Considering the enzymic nature of this protein, it is remarkable that it represents 1% to 2% of the total mitotic chromosomal protein. About 60% to 80% of topoisomerase II partitions into the scaffold structure as prepared from isolated chromosomes, and we find approximately three copies per average 70,000-base loop. This supports the proposed structural role of the scaffold in the organization of the mitotic chromosome. The dual enzymic and apparent structural function of topoisomerase II (SC1) and its location at or near the base of chromatin loops allows speculation as to its involvement in the long-range control of chromatin structure.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2839-2850
We report the development of a new method for producing mitotic extracts from tissue culture cells. These extracts reproducibly promote the condensation of chromatin in vitro when incubated with purified interphase nuclei. This condensation reaction is not species specific, since nuclei from chicken, human, and hamster cell lines all undergo chromatin condensation upon incubation with the extract. We have used this extract to investigate the role of DNA topoisomerase II (topo II) in the chromosome condensation process. Chromatin condensation does not require the presence of soluble topo II in the mitotic extract. However, the extent of formation of discrete chromosome-like structures correlates with the level of endogenous topo II present in the interphase nuclei. Our results further suggest that chromatin condensation in this extract may involve two processes: chromatin compaction and resolution into discrete chromosomes.  相似文献   

7.
It is known that topoisomerase IIalpha is phosphorylated by several kinases. To elucidate the role of phosphorylation of topoisomerase IIalpha in the cell cycle, we have examined the cell cycle behavior of phosphorylated topoisomerase IIalpha in HeLa cells using antibodies against several phospho-oligopeptides of this enzyme. Here we demonstrate that serine1212 in topoisomerase IIalpha is phosphorylated only in the mitotic phase. Using an antibody against an oligopeptide containing phosphoserine-1212 in topoisomerase IIalpha (PS1212), subcellular localization of topoisomerase IIalpha phosphorylated at serine1212 was examined by indirect immunofluorescence staining, and compared with that of overall topoisomerase IIalpha. Serine1212-phosphorylated topoisomerase IIalpha was localized specifically on mitotic chromosomes, but not on interphase chromosomes; this result contrasts with overall topoisomerase IIalpha which was observed on chomosomes in both interphase and mitosis. Serine1212-phosphorylated topoisomerase lIalpha first appeared on chromosome arms in prophase, became concentrated on the centromeres in metaphase, and disappeared in early telophase. In addition, ICRF-193, a catalytic inhibitor of topoisomerase II, prevented accumulation of serine1212-phosphorylated topoisomerase IIalpha at the centromeres. These results indicate that serine1212 of topoisomerase IIalpha is phosphorylated specifically during mitosis, and suggest that the serine1212-phosphorylated topoisomerase IIalpha acts on resolving topological constraint progressively from the chromosome arm to the centromere during metaphase chromosome condensation.  相似文献   

8.
Here, we describe the cloning and characterization of ScII, the second most abundant protein after topoisomerase II, of the chromosome scaffold fraction to be identified. ScII is structurally related to a protein, Smc1p, previously found to be required for accurate chromosome segregation in Saccharomyces cerevisiae. ScII and the other members of the emerging family of SMC1-like proteins are likely to be novel ATPases, with NTP-binding A and B sites separated by two lengthy regions predicted to form an alpha-helical coiled-coil. Analysis of the ScII B site predicted that ScII might use ATP by a mechanism similar to the bacterial recN DNA repair and recombination enzyme. ScII is a mitosis-specific scaffold protein that colocalizes with topoisomerase II in mitotic chromosomes. However, ScII appears not to be associated with the interphase nuclear matrix. ScII might thus play a role in mitotic processes such as chromosome condensation or sister chromatid disjunction, both of which have been previously shown to involve topoisomerase II.  相似文献   

9.
Topoisomerase IIα is an essential enzyme that resolves topological constraints in genomic DNA. It functions in disentangling intertwined chromosomes during anaphase leading to chromosome segregation thus preserving genomic stability. Here we describe a previously unrecognized mechanism regulating topoisomerase IIα activity that is dependent on the F-box protein Fbxo28. We find that Fbxo28, an evolutionarily conserved protein, is required for proper mitotic progression. Interfering with Fbxo28 function leads to a delay in metaphase-to-anaphase progression resulting in mitotic defects as lagging chromosomes, multipolar spindles and multinucleation. Furthermore, we find that Fbxo28 interacts and colocalizes with topoisomerase IIα throughout the cell cycle. Depletion of Fbxo28 results in an increase in topoisomerase IIα?dependent DNA decatenation activity. Interestingly, blocking the interaction between Fbxo28 and topoisomerase IIα also results in multinucleated cells. Our findings suggest that Fbxo28 regulates topoisomerase IIα decatenation activity and plays an important role in maintaining genomic stability.  相似文献   

10.
11.
Human autoantibody to topoisomerase II   总被引:3,自引:0,他引:3  
The rheumatic diseases are characterized by the production of autoantibodies that are usually directed against components of the cell nucleus. In this communication, we describe autoantibodies that recognize DNA topoisomerase II (anti-topoII) present in the serum of a patient with systemic lupus erythematosus. Several lines of evidence indicate that this antibody recognizes topoisomerase II. First, it binds to the native enzyme in soluble extracts prepared from isolated chromosomes and effectively depletes such extracts of active enzyme. Second, the serum binds to topoisomerase II in immunoblots of mitotic chromosomes and chromosome scaffolds. Finally, the antiserum binds strongly to a fusion protein encoded by a cloned cDNA and expressed in Escherichia coli that (based on immunological evidence) represents the carboxy-terminal portion of chicken topoisomerase II. Autoantibodies such as the one described here may provide useful reagents for the study of human topoisomerase II.  相似文献   

12.
13.
We have recently shown that the aggregation factor (AF) from the sponge Geodia cydonium stimulates DNA synthesis in quiescent, dissociated cells from the same organism; this event was correlated with the release of the two second messengers: inositol trisphosphate and diacylglycerol. Here we describe that after binding of the AF to the plasma membrane-bound aggregation receptor, a rapid and drastic increase in the incorporation of 32Pi into a series of proteins in the pore complex-lamina fraction occurs. Addition of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, to quiescent cells resulted in a similar stimulation of phosphorylation of nuclear proteins. Among them we have selected one protein with a polypeptide Mr of 170,000 (pp170) for detailed studies. By immunoblotting pp170 was identified as DNA topoisomerase II. In vitro studies with nuclei and purified, homogeneous protein kinase C together with the required activators of this enzyme also showed a phosphorylation of pp170. After phosphorylation, DNA topoisomerase II activity was found to be 2.5-fold that of the non-phosphorylated enzyme. From these data we conclude that protein kinase C is involved in AF induced transmembrane signalling, ultimately leading to an initiation of DNA synthesis.  相似文献   

14.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

15.
The juxtaposition of intracellular DNA segments, together with the DNA‐passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.  相似文献   

16.
17.
We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase-anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.  相似文献   

18.
Mammalian cells express two genetically distinct isoforms of DNA topoisomerase II, designated topoisomerase IIalphaand topoisomerase IIbeta. We have recently shown that mouse topoisomerase IIalpha can substitute for the yeast topoisomerase II enzyme and complement yeast top2 mutations. This functional complementation allowed functional analysis of the C-terminal domain (CTD) of mammalian topoisomerase II, where the amino acid sequences are divergent and species-specific, in contrast to the highly conserved N-terminal and central domains. Several C-terminal deletion mutants of mouse topoisomerase IIalpha were constructed and expressed in yeast top2 cells. We found that the CTD of topoisomerase IIalphais dispensable for enzymatic activity in vitro but is required for nuclear localization in vivo. Interestingly, the CTD of topoisomerase IIbetawas also able to function as a signal for nuclear targeting. We therefore examined whether the CTD alone is sufficient for nuclear localization in vivo . The C-terminal region was fused to GFP (green fluorescent protein) and expressed under the GAL1 promoter in yeast cells. As expected, GFP signal was exclusively detected in the nucleus, irrespective of the CTD derived from either topoisomerase IIalphaor IIbeta. Surprisingly, when the upstream sequence of each CTD was added nuclear localization of the GFP signal was found to be cell cycle dependent: topoisomerase IIalpha-GFP was seen in the mitotic nucleus but was absent from the interphase nucleus, while topoisomerase IIbeta-GFP was detected predominantly in the interphase nucleus and less in the mitotic nucleus. Our results suggest that the catalytically dispensable CTD of topoisomerase II is sufficient as a signal for nuclear localization and that yeast cells can distinguish between the two isoforms of mammalian topoisomerase II, localizing each protein properly.  相似文献   

19.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

20.
DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (alpha and beta) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIalpha and IIbeta behaved similarly in interphase but differently in mitosis, where only topo IIalpha was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIalpha was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号