首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To reduce mortality among suckling piglets, lactating sows are traditionally housed in farrowing crates. Alternatively, lactating sows can be housed in farrowing pens where the sow is loose to ensure more behavioural freedom and consequently a better welfare for the sow, although under commercial conditions, farrowing pens have been associated with increased piglet mortality. Most suckling piglets that die do so within the first week of life, so potentially lactating sows do not have to be restrained during the entire lactation period. Therefore, the aim of the current study was to investigate whether confinement of the sow for a limited number of days after farrowing would affect piglet mortality. A total of 210 sows (Danish Landrace × Danish Yorkshire) were farrowed in specially designed swing-aside combination farrowing pens measuring 2.6 m × 1.8 m (combi-pen), where the sows could be kept loose or in a crate. The sows were either: (a) loose during the entire experimental period, (b) crated from days 0 to 4 postpartum, (c) crated from days 0 to 7 postpartum or (d) crated from introduction to the farrowing pen to day 7 postpartum. The sows and their subsequent litters were studied from introduction to the combi-pen ∼1 week before expected farrowing and until 10 days postpartum. Confinement period of the sow failed to affect the number of stillborn piglets; however, sows that were crated after farrowing had fewer live-born mortality deaths (P < 0.001) compared with the sows that were loose during the experimental period. The increased piglet mortality among the loose sows was because of higher mortality in the first 4 days after farrowing. In conclusion, the current study demonstrated that crating the sow for 4 days postpartum was sufficient to reduce piglet mortality.  相似文献   

2.
Producers are interested in utilising farrowing systems with reduced confinement to improve sow welfare. However, concerns of increased mortality may limit commercial uptake. Temporary confinement systems utilise a standard crate which is opened 3 to 7 dayspostpartum, providing protection for neonatal piglets at their most vulnerable age and later increased freedom of movement for sows. However, there is anecdotal evidence that piglet mortality increases immediately after the temporary crate is opened. The current study aims were to determine if piglet mortality increases post-opening, to trial different opening techniques to reduce post-opening piglet mortality and to identify how the different opening techniques influence sow behaviour. Three opening treatments were implemented across 416 sows: two involved opening crates individually within each farrowing house when each litter reached 7 days of age, in either the morning or afternoon (AM or PM), with a control of the standard method used on the farm to open all crates in each farrowing house simultaneously once the average litter age reached 7 days (ALL). Behavioural observations were performed on five sows from each treatment during the 6 h after crate opening, and during the same 6 h period on the previous and subsequent days. Across all treatments, piglet mortality was significantly higher in the post-opening than pre-opening period (P<0.0005). Between opening treatments, there were significant differences in piglet mortality during the 2 days after crate opening (P<0.05), whilst piglet mortality also tended to differ from crate opening until weaning (P=0.052), being highest in ALL and lowest in PM. Only sows in the PM treatment showed no increase in standing behaviour but did show an increased number of potentially dangerous posture changes after crate opening (P=0.01), which may be partly attributed to the temporal difference in observation periods. Sow behaviour only differed between AM and ALL on the day before crate opening, suggesting the AM treatment disrupted behaviour pre-opening. Sows in AM and PM treatments showed more sitting behaviour than ALL, and therefore may have been more alert. In conclusion, increases in piglet mortality after crate opening can be reduced by opening crates individually, more so in the afternoon. Sow habituation to disturbance before crate opening may have reduced post-opening piglet mortality, perhaps by reducing the difference in pre- and post-opening sow behaviour patterns.  相似文献   

3.
Outdoor farrowing huts facilitate a less restricted maternal behaviour in sows compared with sows kept indoors in farrowing pens. The aim of our study was to investigate whether there are behavioural differences between primiparous sows kept outdoors in farrowing huts and indoors in pens, and whether the maternal behaviour during the second parity, when all sows were kept outdoors in farrowing huts, would differ between sows that have experienced the indoor or the outdoor environment, respectively, during their first parturition. A total of 26 Yorkshire×Swedish Landrace sows were studied. Of these, 11 sows were housed outdoors in farrowing huts during both parturitions (group=OUTOUT). The other 15 sows were kept indoors in a barn with single farrowing pens during their first parturition. During their second parturition, sows were kept outdoors in farrowing huts (group=INOUT). The behaviour was video recorded from 2 h prepartum to 48 h postpartum. The sows’ responsiveness to playbacks of a piglet’s screams was tested on days 2 to 3 postpartum. Parity 1: during the last 2 h prepartum, OUTOUT sows had a higher proportion of observations in the sternal lying position (P<0.01). During parturition, OUTOUT sows changed posture more often (P<0.05) and were lying less (P<0.05) than INOUT sows. All sows in both groups responded with ‘lifting head’ towards the playback of piglet scream, whereas 100% of OUTOUT sows and only 43% of INOUT sows thereafter were ‘getting up’ (P <0.01). Parity 2: There were no behavioural differences between INOUT and OUTOUT sows. In conclusion, it is not problematic for a second parity sow with initial maternal experience from an indoor farrowing pen to be kept outdoors in farrowing huts during its following farrowing.  相似文献   

4.
Determining best practices for managing free farrowing systems is crucial for uptake. Cross-fostering, the exchange of piglets between litters, is routinely performed amongst crate-housed sows. However, cross-fostering can increase fighting amongst the litter and may be more challenging within free farrowing systems as sows have more freedom to respond to cross-fostered piglets. This study compared the effect of either cross-fostering (FOS), or a control of sham-fostering (CON), of four focal piglets per litter on Day 6 postpartum in crates (CRATE) and free farrowing pens (PEN). The post-treatment behavioural responses of sows were recorded (Day 6 = 60 min; Day 7 = 300 min; n = 48), as were the average daily gain (ADG; g/day), total weight gain (TWG; kg) and body lesion scores of focal piglets and their littermates throughout lactation (Day 6, Day 8, Day 11 and Day 26; n = 539) and the post-weaning period (Day 29, Day 32 and Day 60; n = 108). On Day 6, though post-reunion latency to nursing did not differ, latency to successful nursing was longer amongst FOS than CON litters (P < 0.001), more so amongst CRATE FOS than PEN FOS (P < 0.01). On Day 7, PEN FOS sows had fewer successful nursing bouts (P < 0.05) and exhibited decreased lateral (P < 0.01) and increased ventral lying frequencies (P < 0.01) compared to all other housing and treatment combinations. Focal piglet ADG was lower for FOS than CON in the CRATE during Day 6 to Day 8 (P < 0.01) and lower in the PEN during Day 6 to Day 8 (P < 0.001), Day 8 to Day 11 (P < 0.01) and Day 11 to Day 26 (P < 0.05). The TWG of pre-weaned focal piglets (Day 6 to Day 26) was higher amongst CON than FOS litters (P = 0.01). Post-weaning, piglet ADG was higher for PEN than CRATE during Day 26 to Day 29 (P < 0.01) and higher for FOS than CON during Day 26 to Day 29 (P < 0.05), Day 29 to Day 32 (P < 0.001) and Day 32 to Day 60 (P < 0.01); thus, TWG was higher for FOS than CON during the weaner (P = 0.001) and the combined lactation and weaner periods (P = 0.09). In conclusion, sow behaviour was disrupted by cross-fostering in the crates and pens and continued to be disturbed on the following day amongst penned sows. FOS piglets exhibited reduced ADG after cross-fostering, which extended throughout lactation in the pens. However, the increased post-weaning weight gain of FOS piglets meant that their TWG was higher than CON piglets, irrespective of the farrowing system used.  相似文献   

5.
Temporary confinement during parturition and early postpartum may provide an intermediary step preceding loose housing that offers improvement in sow and piglet welfare. Three experiments were conducted to investigate the implications of replacing farrowing crates (FCs) with an alternative housing system from 3 days postpartum until weaning. In each experiment sows farrowed in FCs and were randomly allocated at day 3 of lactation to either a FC or a pen with increased floor space (lactation pen (LP)) until weaning. In experiment 1, piglet growth and sow and piglet skin injuries were recorded for 32 sows and 128 focal piglets in these litters. Behaviour around nursing and piglet behavioural time budgets were also recorded for 24 of these litters (96 focal piglets for time budgets). In experiment 2, measures of skin injury and behavioural time budgets were conducted on 28 sows and 112 focal piglets. The behavioural response of sows to piglet vocalisation (maternal responsiveness test (MRT)) was also assessed. In experiment 3, piglet mortality from day 3 of lactation until weaning was recorded in 672 litters over 12 months. While housing did not affect piglet weight gain in experiment 1, or piglet skin injuries in experiments 1 or 2, sows in both experiments sustained more injuries in LP than FC (experiment 1, 2.9 v. 1.4; experiment 2, 2.5 v. 0.8 lesions/sow; P<0.05). Sow–piglet interactions were more frequent in LP than FC at days 11 and 18 postpartum in both experiment 1 (day 11, 1.4% v. 1.2%; day 18, 1.7% v. 1.0% of observations; P=0.05) and 2 (day 11, 1.0% v. 0.3%; and at day 18 were 1.0% v. 0.6% of observations; P<0.01), and LP sows were more responsive in the MRT in experiment 2 (2 v. 0 median number of tests in which sows react, P<0.01). In experiment 1 piglets played more (0.7% v. 0.3% of observations, P=0.05) and manipulated others less (0.3% v. 0.7% of observations, P=0.04) in LP, but more piglets missed nursing bouts (0.2 v. 0.1 piglets/bout, P<0.01) compared with FC. There was no effect of housing on piglet mortality from day 3 of lactation until weaning in experiment 3 (0.63 and 0.64 deaths/litter for LP and FC, respectively, P>0.05). Thus, housing sows and litters in LP from day 3 of lactation minimises piglet mortality while improving maternal behaviour in sows and social behaviour in piglets.  相似文献   

6.
The modern hyper-prolific sow gives birth to more piglets than she has functional teats (in the following called supernumerary piglets). The aim of the present study was (1) to investigate the production consequences of hyper-prolific sows rearing supernumerary piglets equal to the mean live-born litter size, and (2) investigate whether potential negative effects on survival and growth could be alleviated by providing access to milk replacer and/or providing easier access to the udder (by loose housing). At day 1 (D1) postpartum (pp), 93 litters were standardised to 14 or 17 piglets (LS14/LS17) after which no piglets were moved between sows leading to decreased litter size if piglets died. Litters were provided with or without milk replacer in milk cups (+MILK/−MILK), and sows were either crated or loose housed (CRATE/LOOSE) in a 2 × 2 × 2 factorial design. Piglet mortality was higher in LS17 compared to LS14 (P < 0.01; OR = 2.0), higher in −MILK compared to +MILK (P = 0.01; OR = 1.2) and higher in LOOSE compared to CRATE (P = 0.02; OR = 1.8). This study showed that sow rearing of supernumerary piglets while supplying with milk replacer can increase piglet survival. It also showed that early mortality before piglets learned to drink milk replacer posed a challenge using this automatic milk replacer system. An interaction between access to milk replacer and the standardised litter size D1 affected litter weight (P < 0.01) and piglet weight day 28 (D28) (P = 0.03). The highest litter weight D28 was found in LS17 +MILK (P < 0.01) but with a lower individual piglet weight than in LS14 −MILK. Piglet weight D28 was higher in LS14 −MILK compared to LS17 regardless of access to milk replacer. Heterogeneity in piglet weight within litters D28 was larger in LS17 (P = 0.03) but could be reduced with +MILK in CRATE (P < 0.01). No effects were found on sow weight loss and feed intake (P > 0.05). In conclusion, the results showed that sows cannot rear the supernumerary piglets without further management interventions to reduce mortality. Supplying supernumerary piglets equal to the mean live-born litter size of hyper-prolific sows with milk replacer can from results of this study be an alternative strategy to the use of nurse sows.  相似文献   

7.
Sows are strongly driven to build a nest prior to farrowing, and the performance of this behaviour is linked to the environment in which the animal is housed. The aim of this study was to investigate the impact of two nest-building materials, hessian and straw, on peri-parturient sow behaviour, plasma cortisol concentration and piglet survival and performance in farrowing crates. In the first experiment, sows (parity 1.7 ± 0.1) were allocated to four treatments: (n = 15), straw provided in the lead up to farrowing in an open farrowing pen, with the pen closed after farrowing (STRAW OPEN); (n = 14), straw provided in the lead up to farrowing in a closed farrowing pen (STRAW CLOSED); (n = 15), a closed farrowing pen with hessian sacks provided in the lead up to farrowing (HESSIAN) and; (n = 13), a closed farrowing pen with no nesting materials provided (CONTROL). A second experiment was performed on a separate farm to assess the effect of the same four treatments were applied to sows (parity 2.9 ± 0.1): SRAW OPEN (n = 68), STRAW CLOSED (n = 64), HESSIAN (n = 66) and CONTROL (n = 66), at a commercial level. The first experiment revealed that providing conventionally housed sows with straw or hessian in the lead up to parturition stimulated sows to perform nest-building behaviours similar to sows housed in an open pen with access to straw (nosing events; 16 ± 11 (CONTROL); 169 ± 36 (HESSIAN); 118 ± 29 (STRAW CLOSED); 199 ± 53 (STRAW OPEN); P < 0.05). Additionally, crated sows provided with straw had reduced cortisol levels immediately after farrowing compared to all other treatments (21.9 ± 6.1 ng/ml vs CONTROL; 49.3 ± 8.6 ng/ml; P < 0.01). Piglets born to STRAW CLOSED sows displayed the highest colostrum intake levels (404.8 ± 22.7 g vs CONTROL 361.9 ± 21.9 g; P < 0.01). The second experiment demonstrated a reduced incidence of piglet mortality both prior to fostering (0.7 ± 0.2; P = 0.001) and after fostering (0.7 ± 0.2; P = 0.001) in litters born to sows which were housed in conventional farrowing crates and provided with straw compared to CONTROL (prior to fostering 1.3 ± 0.2, and postfostering 1.1 ± 0.2). In conclusion, straw and hessian sacks are a suitable substrate for stimulating sows to exhibit nest-building behaviour under crated conditions. However, only the provision of straw in the crate environment improved piglet survival and positively affected sow welfare.  相似文献   

8.
It has been documented that floor heating of the farrowing area in loose housed sows improves survival of piglets significantly. However, today, the majority of farrowing pens are designed with crating of sows and slatted floor at the birth site. The aim of this study was to investigate whether providing radiant heat at the birth site to new-born piglets in pens with crated sows reduced hypothermia, time to first milk intake and growth of the piglets during the 1st week. Second parity Danish Landrace×Yorkshire sows (n=36) were randomly divided into two groups: Control (CG) and heat (HG). In the area behind the sow (zone 1), two radiant heat panels were mounted above the slatted floor in the HG. The farrowings were attended, and the heaters were turned on at birth of first piglet and turned off 12 h after. Birth time, time to leave zone 1, time to first contact with udder and time to first suckling were registered by direct observation. The piglet’s rectal temperature (RT) was measured 15, 30, 60, 120, 180, 240 min after birth and 12, 14 and 24 h after birth of first piglet. Piglets were weighed at birth, 24 and 48 h and 7 days after birth. Data were analysed in a mixed model in SAS. The drop in RT was lower in HG compared with CG (P=0.002), and the RT in HG remained higher than in CG from 30 to 240 min after birth (P<0.05), whereas no difference was found at 12 h after birth of first piglet (P=0.92). Piglets in HG stayed longer in zone 1 than those in CG (P=0.01), whereas time to reach udder (P=0.35) and to first suckling (P=0.56) did not differ. No difference in weight gain was found between piglets in HG and CG at 24 h (P=0.23), 48 h (P=0.28) and 7 days after birth (P=0.44). Birth weight had a positive effect on RT (P<0.001) and reduced time to leave zone 1 (P<0.01), reach udder (P<0.001) and time to first suckling (P<0.001). The results showed that radiant heating behind the sows reduced hypothermia in new-born piglets and indicate that providing heat during the first half hour after birth is important.  相似文献   

9.
The profitability of pig production is constrained by high incidences of peri-parturient and pre-weaning piglet mortality. Supplementing sows with either progesterone or caffeine during the last week of gestation can reduce stillbirths and improve piglet performance. However, the consequences of combining these two substances has not been investigated. The aim of the current study was to determine the effect of oral supplementation of sows with progesterone (regumate) and caffeine at the end of gestation on the timing and progression of farrowing, as well as piglet survival and growth to weaning. From days 111 to 113 of gestation, 20 Large White pregnant sows (parity 3.0±0.45) received 5 ml of Regumate Porcine (0.4 w/v oral solution; MSD Animal Health) daily on top of their morning ration. Sows were stratified according to parity and predicted farrowing date, and allocated at random to receive a diet supplemented with either 0 g caffeine/kg diet (CONT) or 2.4 g of caffeine/kg diet (CAFF) from day 113 of gestation until parturition (n=10 sows/treatment). Treatment did not affect total litter size; however, CONT sows gave birth to more live and fewer dead piglets compared with CAFF sows; 14.5±0.73 v. 11.7±1.03 and 0.7±0.20 v. 3.2±0.77; P<0.05). Mean, minimum and maximum piglet birthweight were unaffected by treatment. Compared with the control, caffeine increased the proportion of piglets with a birthweight <1 kg (0.16±0.05 v. 0.05±0.02; P=0.072) and decreased the proportion of live born piglets surviving to day 5 postpartum (0.77±0.06 v. 0.90±0.02; P<0.05) and to weaning (0.74±0.06 v. 0.90±0.02; P<0.05). Overall, the current data provided the first evidence that caffeine supplementation of sows receiving progesterone to prevent premature farrowing impaired piglet survival during, and shortly after parturition. This negative outcome may be linked to extended farrowing durations and an increase in the proportion of very light piglets at birth. These data provide compelling, albeit preliminary, evidence that caffeine and progesterone should not be used together at the end of gestation.  相似文献   

10.
In a 2×2 factorial experiment, the effects of gestation and farrowing housing on (1) periparturient behaviour and circulating prolactin, prostaglandin F (PGF) and oxytocin in gilts with access to peat, straw and branches, and (2) correlational relationships between the periparturient behaviour and hormones were studied. The treatments consisted of housing in stalls or pens from mating to day 110 of gestation followed by farrowing crates or pens until after parturition. Landrace×Yorkshire gilts were observed from video recordings (n=25) from 20 h prepartum and blood sampled via jugular catheters (n=16) from 24 h prepartum until 2 h after the birth of the first piglet.There was an interaction between gestation and farrowing housing affecting the start of nest-building (P=0.03). Gilts that experienced a change in type of housing accommodation commenced nest-building closer to parturition than gilts that were penned both during gestation and at farrowing (both P<0.05). There were no effects of the housing environment on the timing of termination of nest-building, behaviour during parturition, or the course of parturition. However, relative to base level, crated gilts sat more from 16 to 6 h prepartum, whereas this was the case for penned gilts only from 9 to 7 h prepartum. Crated gilts also tended to change posture more often (P=0.07) and lie more in sternal recumbency (P=0.095). This suggests that familiarity with the environment in combination with space to move about and/or availability of materials is important in the timing of nest-building. Confinement during farrowing did not appear to impair feed-back from the materials and the nest, although increased number of postural changes may reflect the motivation but inability to nest-build, or general discomfort in the crate.There was a development over time in postural and nest-building behaviours as well as in plasma concentrations of prolactin, PGF (measured by the metabolite PGFM) and oxytocin, but there were only few effects of housing treatments on hormones or associations between behaviour and hormones. The results suggest that nest-building occurs independently of a prepartum rise in prolactin, but that oxytocin may be associated with the termination of nest-building as there was a negative correlational relationship with nosing (P<0.01) and arranging nest-building materials (P<0.001).Farrowing crate housing appeared to have fewer effects on periparturient behaviour and course of parturition than reported in previous studies where effects of confinement and provision of nest-building materials may have been confounded. Thus, provision of nest-building materials to crated sows may have beneficial effects on sow behaviour and welfare.  相似文献   

11.
Loose farrowing pens have been considered as alternatives to crates to enhance sow welfare. A major concern with pen systems is often higher piglet pre-weaning mortality, especially due to crushing by the sow. An optimal management of light and mat surface temperature may promote greater piglet use of the creep, which has been associated with reduced piglet crushing. A total of 108 sows and their piglets were studied in sow welfare and piglet protection pens on a commercial piggery, across two replicates. Sows were randomly assigned to pens arranged within two creep treatments (bright creep: 300 lx v. dark creep: 4 lx), considering mat temperature as a covariate. Twelve sows and their litters in each treatment (24 in total) had their behaviour continuously recorded for 72-h postpartum (pp), and four focal piglets per litter were weighed on the first and third days pp. In situ behaviour observations were performed daily (from 0800 to 1700 h) on all sows and their litters, every 15 min over 72-h pp to record piglet time spent in the creep, latency to enter the creep for the first time, latency for the litter to remain in the creep for at least 10 min, and piglet and sow use of pen areas immediately in front of (A2) and farthest from the creep (A3). Piglets with access to bright creeps spent on average 7.2% more time (P<0.01) in the creeps than piglets in pens with Dark creeps. In addition, for each degree increase in mat temperature, piglets spent on average 2.1% more time (P<0.01) in the creep. Piglets in pens with bright creeps spent less time in A2 (P=0.04) and the least time in A3 (P=0.01). Light or mat temperature did not affect sow use of pen areas or piglet weight gain. Piglets with bright creeps tended (P=0.06) to take longer to enter the creep for the first time after birth, but the latency for 30.0% of the litter to remain clustered for 10 min tended (P=0.08) to be shorter in bright compared to dark creeps. Overall, piglet use of the creep increased with warm mat temperatures and brightness, which should be further investigated as potential strategies to promote piglet safety and reduce crushing in pen farrowing systems.  相似文献   

12.
If loose-housed farrowing systems are to be an alternative to traditional farrowing crates, it is important that they can deliver the same production results as can be achieved in farrowing crates under commercial conditions. The aim of this study was to compare preweaning mortality in farrowing crates and free farrowing pens (FF-pens) within herds that had both systems. The study was conducted over 2 years in three commercial Danish herds that had FF-pens as well as traditional farrowing crates in their farrowing unit. Piglet mortality was analysed in two periods: before litter equalisation and after litter equalisation. Linear models were used to analyse effects of housing (crate or pen), herd (Herd A, B or C), parity (parities 1, 2, 3 to 4 or 5 to 8) as well as the effect of number of total born piglets on mortality before litter equalisation, and the effect of equalised litter size on piglet mortality after litter equalisation. All corresponding interactions were included in the models. Before litter equalisation piglet mortality was higher (P<0.001) in pens (13.7%) than in crates (11.8%). Similarly, piglet mortality after litter equalisation was higher in pens than in crates in all three herds, but the difference between pens and crates were dissimilar (P<0.05) in the different herds. In addition, piglet mortality, both before (P<0.001) and after litter equalisation (P<0.001), grew with increasing parity of the sows. Mortality before litter equalisation moreover increased with increasing number of total born piglets per litter (P<0.001), and mortality after equalisation increased when equalised litter size increased (P<0.001). No significant interactions were detected between housing and parity or housing and litter size for any of the analysed variables. In conclusion, there is knowledge how to design pens for free farrowing; but this study showed a higher preweaning mortality in the FF-pen. Nonetheless a noteworthy proportion of the sows in the FF-pens delivered results comparable to those farrowing in crates. This indicates that FF-pens are not yet a robust type of housing for farrowing sows.  相似文献   

13.
The farrowing process is one of the most energy-demanding activities for the modern hyperprolific sow. This study evaluated the effects of supply of energy on the expected date of farrowing on the farrowing kinetics and piglets’ performance during the first 24 h after birth. A total of 80 sows were used. The sows and their respective litters were considered as the experimental unit. On the expected day of farrowing, the sows were allocated to one of the following groups: sows that did not have access to feed from farrowing induction until the end of the farrowing process (CON, n = 40); sows fed 500 g of energetic supplement, which consisted of 250 g of the basal lactation diet plus 250 g of cane sugar, 18 h after farrowing induction (SUP, n = 40). The farrowing duration, farrowing assistance, birth interval, number of total born, stillborn and mummified piglets were recorded for each sow. Piglets were weighed individually at birth and 24 h later. The interval from birth to first suckle was evaluated individually for each piglet in 16 randomly selected litters (eight litters per treatment group). Blood glucose concentrations of six sows were measured shortly after expulsion of the first piglet. Farrowing duration, farrowing assistance and stillborn rate tended to be greater (P = 0.06, P = 0.09 and P = 0.07, respectively) in sows from the CON group compared to sows from the SUP group. However, there was no difference (P > 0.05) between the groups for birth interval. Colostrum intake was greater (P < 0.05) for piglets from the SUP group compared to piglets from the CON group. Additionally, BW gain of the piglets suckling the SUP group was greater (P < 0.05) than those suckling the CON group at 24 h after birth. The blood glucose concentrations during the expulsive stage of farrowing were greater (P < 0.05) in the SUP group than for sows from the CON group. In conclusion, supplying modern hyperprolific sows energy on the expected day of farrowing is a valuable nutritional intervention to improve the farrowing kinetics and piglets’ performance in early life.  相似文献   

14.
The modern hyper-prolific sow gives birth to 17 live-born piglets on average. An alternative strategy to nurse sows and artificial rearing may be providing milk replacer while letting all the piglets stay with their dam. However, milk replacer is of lower nutritional quality than sow milk and may reduce the body fat content of piglets who use milk replacer to compensate for low suckling success due to competition at the udder. Therefore, the aim of this study was to investigate the body composition at weaning of two random sow-reared piglets per litter from 93 litters by using the deuterium oxide dilution technique. The piglets were part of large study with a 2×2×2 factorial design of either 14 or 17 piglets from day 1 (LS: LS14/LS17) with or without access to milk replacer (MILK: -MILK/+MILK) and reared by crated or loose-housed sows (HOUSING: CRATE/ LOOSE). From behavioral observations day 21 in +MILK, piglets were divided according to their frequency of drinking milk replacer and suckling (Nutrition Source). Increasing LS from 14 to 17 reduced the average daily gain from 258 to 228 g/d and body fat % from 14.4 to 12.7% (P<0.01). In a two-way interaction between LS and HOUSNG, the body fat percentage was lower (P=0.04) and the water percentage tended to be higher (P=0.07) in LS17 CRATE compared to the other treatments (i.e. LS17 LOOSE, LS14 CRATE and LOOSE). There was no effect of MILK on piglet composition day 28 (P>0.1). In +MILK, the Nutrition Source affected piglet body composition (P<0.05) as piglets with low suckling frequency (LOW) had lower body fat and higher water content compared to piglets who had high suckling frequency (SUCKLE). Unexpectedly, drinking milk replacer in addition to suckling (MIXED) did not increase piglet body fat content. Relying mainly on milk replacer (CUP) caused body fat and water contents to be intermediate to piglets with high (SUCKLE and MIXED) and low suckling frequency (LOW). In conclusion, LS had a clear impact on piglet growth and body composition at weaning. In contrast, supplementation of milk and housing had only negligible impact on litter performance. Some individual piglets that had low frequency of sow milk intake benefitted from milk supplementation. Loose housing appeared to benefit piglet body fat at weaning but this was due to a greater piglet mortality.  相似文献   

15.
Late gestating sows are susceptible to high ambient temperatures, possibly causing farrowing complications and reducing piglet survival. This experiment aimed to quantify in the days leading up to farrowing the impact of sow heat stress (HS) on farrowing physiology and survival of the piglets. Pregnant primiparous sows (gilts) were allocated to either thermoneutral control (CON, n = 8; constant 20 °C) or cyclical HS conditions (n = 8; 0900 h to 1700 h, 30 °C; 1700 h to 0900 h, 28 °C) from d 110 of gestation until farrowing completion. Gilt respiration rate, skin temperature and rectal temperature were recorded daily, and farrowing duration was quantified by video analyses. Blood samples were collected from the piglet umbilical vein at birth. At 48 h of age, piglet growth was quantified by morphometric analyses. The thermal exposure model induced HS and respiratory alkalosis in the gilts, as indicated by increased respiration rate, rectal temperature, skin temperature (all P < 0.001), plasma cortisol (P = 0.01) and blood pH (P < 0.001). Heat-stressed gilts took longer to start expelling placentae (P = 0.003), although the active farrowing duration was not significantly different between treatments. Stillbirth rates were higher in the HS group (P < 0.001), with surviving piglets at birth having lower umbilical vein partial pressure of oxygen (P = 0.04), oxygen saturation rate (P = 0.03) and tending to have increased lactate concentrations (P = 0.07). At birth, piglet skin meconium staining scores were greater in the HS group (P = 0.022). At 48 h of age, piglets from the HS group had reduced small intestinal length (P = 0.02), reduced jejunal crypt depth (P = 0.02) and lighter absolute brain weight (P = 0.001). In contrast, piglet BW, growth rate, relative organ weight and small intestinal mucosal barrier function did not change between treatments. Collectively, these findings demonstrated gilt HS during late gestation caused farrowing complications and reduced the umbilical oxygen supply to the piglets at parturition, leading to increased risks of piglet stillbirth with implications on impaired neonatal survivability and development.  相似文献   

16.
Fear and environmental stressors may negatively affect the welfare of farm animals such as pigs. The present study investigated the effects of music and positive handling on reproductive performance of sows (n = 1014; parity 1 to 8) from a commercial pig farm practicing a batch farrowing system. Every 2 weeks, 56 sows were moved from the gestation unit to conventional-crated farrowing houses 1 week prior to expected farrowing. Treated (T; n = 299) and control (C; n = 715) sows were included in the study. In the farrowing houses, auditory enrichment (music from a radio) was provided to sows of T groups daily from 0600 to 1800 h until the end of lactation. Until the day of farrowing, T sows were additionally subjected, for 15 s per day per sow, to continuous back scratching by one member of farm staff. Litter performance and piglet mortality were recorded and analysed between T and C sows using linear mixed regression models. The number of liveborn piglets (C 13.85 v. T 13.26) and liveborn corrected for fostering (C 13.85 v. T 13.43) was significantly higher (P < 0.05) in C groups compared to the T groups. The number of stillborn piglets was 0.60 and 0.72 in T and C groups, respectively (P > 0.05). With regard to piglet mortality, a linear mixed regression model showed a significant overall effect of treatment in reducing piglet mortality (P < 0.01). Yet, the effect of treatment varied according to litter size (number of liveborn piglets) with a diminishing treatment effect in sows with a high litter size (P < 0.01). Pre-weaning survival was improved in the current study by the combined effect of daily back scratching of sows prior to farrowing and providing music to sows and piglets during lactation. Further research is needed to assess the separate effects of both interventions.  相似文献   

17.
The mechanism of action of leptin in pregnant breeding sows, in which hyperphagia is managed through dietary strategies, is yet to be clarified. The aim of this study was to monitor leptin concentrations and their interactions with lactogenic hormones in Large White×Landrace breeding multiparous sows (n=15). All sows showed a normal body condition (mean body condition score: 2.96). Blood samples were collected the day after weaning the litters, at insemination, every 15 days up to day 45 of pregnancy and every 7 days from day 46 to farrowing. At delivery, the placenta was collected for the analysis of leptin and leptin receptor expressions. Plasma leptin levels increased from the end of mid gestation (day 72) and remained high until farrowing (P<0.05). As expected, plasma prolactin (PRL), low during most of pregnancy, increased during the 2 weeks before farrowing (P<0.05), whereas progesterone levels reached plateau at 30 days of gestation and decreased at farrowing (P<0.05). Cortisol levels peaked close to farrowing (P<0.05). Leptin was expressed in the placenta, where the receptor expression analysis showed the presence of the short form but not of the long form. A positive correlation was found between leptin and PRL concentrations during mid (r=0.430; P<0.001) and late (r=0.687; P<0.001) pregnancy, and with progesterone in early pregnancy (r=0.462; P<0.05). During late gestation, a positive correlation was observed between leptin and cortisol (r=0.585; P<0.001). Our results suggested that, in restrictively fed pregnant sows, the leptin levels increased from the end of mid pregnancy to delivery, confirming the presence of leptin resistance. We showed a correlation between leptin and lactogenic hormones during different stages of pregnancy in sows. Lactogenic hormones show pregnancy-specific changes in their secretion and all may become involved in modulating leptin signal.  相似文献   

18.
The objective of this study was to investigate piglet use of the creep area, comparing litters of sows with a high vs. low breeding value for piglet survival in the first 5 days postpartum, that were either housed in crates or individual pens during farrowing and lactation. Seventy-five Yorkshire × Danish Landrace sows were video recorded for 4 days after farrowing, and the analysis was conducted using instantaneous sampling every 10 min commencing 24 h after the birth of the first piglet for a period of 72 h. Breeding value for piglet survival had no effect on piglet use of the creep area or time spent in any location of the farrowing environment. Farrowing environment had significant effects on piglet location; during all days there were significantly more piglets in the creep area in the crates compared to the pens (P < 0.01), and this difference was larger at 24–48 h than at 49–72 h and at 73–96 h after birth (P < 0.05). Piglets in pens spent significantly more time resting near the sow, excluded nursing (P < 0.001), and this percentage decreased over time after farrowing (P < 0.001) in both the crates and the pens. In conclusion, piglet use of the creep area was higher in the crate compared to the pen particularly during the second day of life. This may partly be due to a much larger proportion of uncomfortable, slatted floor in the crates, and the shorter distance from the sow to the creep area in the crate.  相似文献   

19.
Temporary crating may be a more acceptable housing system for lactating sows than permanent crating and loose-housing because it combines benefits of both systems while reducing some of their limitations. It remains unclear whether nursing and sucking behaviour is influenced after crate opening. The aim of this study was to assess the short- (24 h post-crate opening) and long-term (day 25 postpartum (pp.)) effects of opening the farrowing crate from day 3 pp. to weaning on nursing and suckling behaviour. Sows were crated from 5 days prepartum either to weaning (permanently crated group; n = 14) or 3 days pp. (temporarily crated group; n = 13). Sows and their litters were observed on days 4 and 25. Duration of pre- and post-massages, nursing termination, number of piglets missing milk ejection and number of piglets fighting during pre- and post-massages were scored at 15-s intervals. Nursing success (i.e. with or without milk ejection) was also recorded. Data were analysed using PROC GLM and PROC GENMOD of SAS including housing, litter size and parity as fixed effects. Nursing behaviour did not differ between sows housed in temporary crates and those housed in permanent crates on days 4 and 25 pp., that is, same number of nutritive nursings (NNs), same proportion of non-NNs, same duration of post-massages and same proportion of termination of post-massages. There was only a housing effect on day 25; with sows having longer pre-massages in permanent crates (P < 0.05). Suckling behaviour was overall similar between treatments. There were no differences in the number of piglets attending pre- and post-massages, proportion of piglets fighting during pre-and post-massages and the proportion of piglets missing milk ejection on both days. The only housing effect was found on day 25 during which fewer piglets attended post-massages (P < 0.05) in permanent crates. Sows with larger litters terminated post-massages more often (P < 0.05), allowed shorter post-massages (P < 0.05) on day 4, and had more piglets miss milk ejection on days 4 and 25 (P < 0.05). In conclusion, the results of this study showed that housing had a very limited effect on nursing and suckling behaviour. Sow and piglet behaviours were not altered after crate opening (short-term effect) and nursing was to some extent calmer (shorter pre-massages and more piglets attended post-massages) in temporary crates on day 25. Increased litter size impaired nursing and suckling behaviour of sows and piglets independently of the housing system.  相似文献   

20.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号