首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Endocrine practice》2019,25(8):836-845
Objective: Most acute-care hospitals have transitioned from sliding-scale to basal-bolus insulin therapy to manage hyperglycemia during hospitalization, but there is limited scientific evidence demonstrating better short-term clinical outcomes using the latter approach. The present study sought to determine if using basal-bolus insulin therapy favorably affects these outcomes in noncritical care settings and, if so, whether the magnitude of benefit differs in patients with known versus newly diagnosed type 2 diabetes.Methods: This natural experiment compared outcomes in 10,120 non–critically ill adults with type 2 diabetes admitted to an academic teaching hospital before and after hospital-wide implementation of a basal-bolus insulin therapy protocol. A group of 30,271 inpatients without diabetes (type 1 or 2) served as controls. Binomial models were used to compare percentages of patients with type 2 diabetes who were transferred to intensive care, experienced complications, or died in the hospital before and after implementation of the protocol, controlling for changes in the control group. The analysis also evaluated before-after changes in length of stay and glucometric indicators.Results: Implementation of basal-bolus therapy did not reduce intensive care use (the primary outcome), complications, mortality, or median length of stay, except in patients with newly diagnosed diabetes (n = 234), who experienced a statistically significant decline in the incidence of complications (P<.01). The absence of effect in previously diagnosed patients was observed in spite of a 32% decline (from 3.7% to 2.5%) in the proportion of inpatient days with hypoglycemia <70 mg/dL (P<.01) and a 16% decline (from 13.5% to 11.3%) in the proportion of days with hyperglycemia >300 mg/dL (P<.01).Conclusion: Despite achieving significant reductions in both hyperglycemia and hypoglycemia, use of basal-bolus insulin therapy to manage hyperglycemia in non–critically ill hospitalized patients did not improve short-term clinical outcomes, except in the small minority of patients with newly diagnosed diabetes. The optimal management of hyperglycemia for improving these outcomes has yet to be determined.Abbreviation: ICD-9 = International Classification of Diseases–Ninth Revision  相似文献   

2.
《Endocrine practice》2015,21(4):355-367
Objective: Uncontrolled hyperglycemia and iatrogenic hypoglycemia represent common and frequently preventable quality and safety issues. We sought to demonstrate the effectiveness of a hypoglycemia reduction bundle, proactive surveillance of glycemic outliers, and an interdisciplinary data-driven approach to glycemic management.Methods: Population: all hospitalized adult non–intensive care unit (non-ICU) patients with hyperglycemia and/or a diagnosis of diabetes admitted to our 550-bed academic center across 5 calendar years (CYs). Interventions: hypoglycemia reduction bundle targeting most common remediable contributors to iatrogenic hypoglycemia; clinical decision support in standardized order sets and glucose management pages; measure-vention (daily measurement of glycemic outliers with concurrent intervention by the inpatient diabetes team); educational programs. Measures and analysis: Pearson chi-square value with relative risks (RRs) and 95% confidence intervals (CIs) were calculated to compare glycemic control, hypoglycemia, and hypoglycemia management parameters across the baseline time period (TP1, CY 2009–2010), transitional (TP2, CY 2011–2012), and mature postintervention phase (TP3, CY 2013). Hypoglycemia defined as blood glucose <70 mg/dL, severe hypoglycemia as <40 mg/dL, and severe hyperglycemia >299 mg/dL.Results: A total of 22,990 non-ICU patients, representing 94,900 patient-days of observation were included over the 5-year study. The RR TP3:TP1 for glycemic excursions was reduced significantly: hypoglycemic stay, 0.71 (95% CI, 0.65 to 0.79); severe hypoglycemic stay, 0.44 (95% CI, 0.34 to 0.58); recurrent hypoglycemic day during stay, 0.78 (95% CI, 0.64 to 0.94); severe hypoglycemic day, 0.48 (95% CI, 0.37 to 0.62); severe hyperglycemic day (>299 mg/dL), 0.76 (95% CI, 0.73 to 0.80).Conclusion: Hyperglycemia and hypoglycemia event rates were both improved, with the most marked effect on severe hypoglycemic events. Most of these interventions should be portable to other hospitals.Abbreviations: BG = blood glucose CDS = clinical decision support CI = confidence interval CY = calendar year DIG = diabetes initiative group EHR = electronic health record ICU = intensive care unit RR = relative risk SHM = Society of Hospital Medicine TP = time period  相似文献   

3.
《Endocrine practice》2015,21(8):927-935
Objective: Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, and overall costs of care in hospitalized patients. At the Stratton VA Medical Center in Albany, New York, a process aimed to improve inpatient glycemic control by remotely assisting primary care teams in the management of hyperglycemia and diabetes was designed.Methods: An electronic query comprised of hospitalized patients with glucose values <70 mg/dL or >350 mg/dL is generated daily. Electronic medical records (EMRs) are individually reviewed by diabetes specialist providers, and management recommendations are sent to primary care teams when applicable. Glucose data was retrospectively examined before and after the establishment of the daily inpatient glycemic survey (DINGS) process, and rates of hyperglycemia and hypoglycemia were compared.Results: Patient-day mean glucose slightly but significantly decreased from 177.6 ± 64.4 to 173.2 ± 59.4 mg/dL (P<.001). The percentage of patient-days with any value >350 mg/dL also decreased from 9.69 to 7.36% (P<.001), while the percentage of patient-days with mean glucose values in the range of 90 to 180 mg/dL increased from 58.1 to 61.4% (P<.001). Glycemic variability, assessed by the SD of glucose, significantly decreased from 53.9 to 49.8 mg/dL (P<.001). Moreover, rates of hypoglycemia (<70 mg/dL) decreased significantly by 41% (P<.001).Conclusion: Quality metrics of inpatient glycemic control improved significantly after the establishment of the DINGS process within our facility. Prospective controlled studies are needed to confirm a causal association.Abbreviations: DINGS = daily inpatient glycemic survey EMR = electronic medical record HbA1c = glycated hemoglobin ICU = intensive care unit VA = Veterans Affairs  相似文献   

4.
《Endocrine practice》2010,16(2):209-218
ObjectiveTo determine the effects of a computerized order set on the inpatient management of diabetes and hyperglycemia.MethodsWe conducted a cluster-randomized controlled trial on the general medical service of an academic medical center staffed by residents and hospitalists. Consecutively enrolled patients with diabetes mellitus or inpatient hyperglycemia were randomized on the basis of their medical team to usual care (control group) or an admission order set built into the hospital’s computer provider order entry (CPOE) system (intervention group). All teams received a detailed subcutaneous insulin protocol and case-based education. The primary outcome was the mean percent of glucose readings per patient between 60 and 180 mg/dL.ResultsBetween April 5 and June 22, 2006, we identified 179 eligible study subjects. The mean percent of glucose readings per patient between 60 and 180 mg/dL was 75% in the intervention group and 71% in the usual care group (adjusted relative risk, 1.36; 95% confidence interval, 1.03 to 1.80). In comparison with usual care, the intervention group also had a lower patient-day weighted mean glucose (148 mg/dL versus 158 mg/dL, P = .04), less use of sliding-scale insulin by itself (25% versus 58%, P = .01), and no significant difference in the rate of severe hypoglycemia (glucose < 40 mg/dL; 0.5% versus 0.3% of patient-days, P = .58).ConclusionThe use of an order set built into a hospital’s CPOE system led to improvements in glycemic control and insulin ordering without causing a significant increase in hypoglycemia. Other institutions with CPOE should consider adopting similar order sets as part of a comprehensive inpatient glycemic management program. (Endocr Pract. 2010;16:209-218)  相似文献   

5.
《Endocrine practice》2015,21(12):1333-1343
Objective: To evaluate the impact of different subcutaneous basal insulin regimens on glycemic variability (GV) and hospital complications in non-intensive care unit (ICU) patients with type 2 diabetes (T2D).Methods: This study is a post hoc analysis of 279 general medicine and surgery patients treated with either a “Basal Bolus” insulin regimen using glargine once daily and glulisine before meals or a “Basal Plus” regimen using glargine once daily plus correction doses of glulisine before meals for glucose >140 mg/dL. GV was calculated as mean delta (Δ) daily glucose, mean SD, and mean amplitude of glycemic excursions (MAGE).Results: Treatment with Basal Bolus and Basal Plus regimens resulted in similar mean daily glucose, hypoglycemia, length of stay (LOS), and hospital complications (all P>.05). There were no differences in GV between treatment groups by Δ change (72.5 ± 36 vs. 69.3 ± 34 mg/dL), SD (38.5 ± 18 vs. 37.1 ± 16 mg/dL) and MAGE (67.5 ± 34 vs. 66.1 ± 39 mg/dL) (all P>.05). Surgery patients treated with Basal Bolus had higher GV compared to those treated with Basal Plus (Δ daily glucose and SD: P = .02, MAGE: P = .009), but no difference in GV was found between treatment groups for the general medicine patients (P>.05). Patients with hypoglycemia events had higher GV compared to subjects without hypoglycemia (P<.05), but no association was found between GV and hospital complications (P>.05).Conclusion: Treating hospitalized, non-ICU, diabetic patients with Basal Plus insulin regimen resulted in similar glucose control and GV compared to the standard Basal Bolus insulin regimen. Higher GV was not associated with hospital complications.Abbreviations:BG = blood glucoseCV= coefficient of variationGV= glycemic variabilityICU = intensive care unitLOS = length of stayMAGE = mean amplitude of glycemic excursionsSSI = sliding scale insulinT2D = type 2 diabetesTDD =total daily dose  相似文献   

6.
7.
《Endocrine practice》2020,26(6):604-611
Objective: Treatment of hyperglycemia with insulin is associated with increased risk of hypoglycemia in type 2 diabetes mellitus (T2DM) patients receiving total parenteral nutrition (TPN). The aim of this study was to determine the predictors of hypoglycemia in hospitalized T2DM patients receiving TPN.Methods: Post hoc analysis of the INSUPAR study, which is a prospective, open-label, multicenter clinical trial of adult inpatients with T2DM in a noncritical setting with indication for TPN.Results: The study included 161 patients; 31 patients (19.3%) had hypoglycemic events, but none of them was severe. In univariate analysis, hypoglycemia was significantly associated with the presence of diabetes with end-organ damage, duration of diabetes, use of insulin prior to admission, glycemic variability (GV), belonging to the glargine insulin group in the INSUPAR trial, mean daily grams of lipids in TPN, mean insulin per 10 grams of carbohydrates, duration of TPN, and increase in urea during TPN. Multiple logistic regression analysis showed that the presence of diabetes with end-organ damage, GV, use of glargine insulin, and TPN duration were risk factors for hypoglycemia.Conclusion: The presence of T2DM with end-organ damage complications, longer TPN duration, belonging to the glargine insulin group, and greater GV are factors associated with the risk of hypoglycemia in diabetic noncritically ill inpatients with parenteral nutrition.Abbreviations: ADA = American Diabetes Association; BMI = body mass index; CV% = coefficient of variation; DM = diabetes mellitus; GI = glargine insulin; GV = glycemic variability; ICU = intensive care unit; RI = regular insulin; T2DM = type 2 diabetes mellitus; TPN = total parenteral nutrition  相似文献   

8.
9.
《Endocrine practice》2021,27(5):413-418
ObjectiveTo evaluate the association between inpatient glycemic control and readmission in individuals with diabetes and hyperglycemia (DM/HG).MethodsTwo data sets were analyzed from fiscal years 2011 to 2013: hospital data using the International Classification of Diseases, Ninth Revision (ICD-9) codes for DM/HG and point of care (POC) glucose monitoring. The variables analyzed included gender, age, mean, minimum and maximum glucose, along with 4 measures of glycemic variability (GV), standard deviation, coefficient of variation, mean amplitude of glucose excursions, and average daily risk range.ResultsOf 66 518 discharges in FY 2011-2013, 28.4% had DM/HG based on ICD-9 codes and 53% received POC monitoring. The overall readmission rate was 13.9%, although the rates for individuals with DM/HG were higher at 18.9% and 20.6% using ICD-9 codes and POC data, respectively. The readmitted group had higher mean glucose (169 ± 47 mg/dL vs 158 ± 46 mg/dL, P < .001). Individuals with severe hypoglycemia and hyperglycemia had the highest readmission rates. All 4 GV measures were consistent and higher in the readmitted group.ConclusionIndividuals with DM/HG have higher 30-day readmission rates than those without. Those readmitted had higher mean glucose, more extreme glucose values, and higher GV. To our knowledge, this is the first report of multiple metrics of inpatient glycemic control, including GV, and their associations with readmission.  相似文献   

10.
《Endocrine practice》2015,21(2):115-121
ObjectiveLittle is known about glycemic control in type 2 diabetes patients treated with insulin in the high-risk period between hospital discharge and follow-up. We sought to assess the impact of remote glucose monitoring on postdischarge glycemic control and insulin titration.MethodsWe randomly assigned 28 hospitalized type 2 diabetes patients who were discharged home on insulin therapy to routine specialty care (RSC) or RSC with daily remote glucose monitoring (RGM). We compared the primary outcome of mean blood glucose and exploratory outcomes of hypoglycemia/hyperglycemia rates, change in hemoglobin A1c and glycated albumin, and insulin titration frequency between groups.ResultsMean blood glucose was not significantly different between the treatment arms (144 ± 34 mg/dL in the RSC group and 172 ± 41 mg/dL in the RGM group; not significant), nor were there significant differences in any of the other measures of glycemia during the month after discharge. Hypoglycemia (glucometer reading < 60 mg/dL) was common, occurring in 46% of subjects, with no difference between groups. In as-treated analysis, insulin dose adjustments (29% with an increase and 43% with decrease in insulin dose) occurred more frequently in the patients who used RGM (average of 2.8 vs. 1.2 dose adjustments; P = .03).ConclusionIn this pilot trial in insulin-treated type 2 diabetes, RGM did not affect glycemic control after hospital discharge; however, the high rate of hypoglycemia in the postdischarge transition period and the higher frequency of insulin titration in patients who used RGM suggest a safety role for such monitoring in the transition from hospital to home. (Endocr Pract. 2015;21:115-121)  相似文献   

11.
《Endocrine practice》2016,22(12):1393-1400
Objective: Hypoglycemia remains one of the main challenges of insulin therapy. To reduce insulin-related hypoglycemia at our institution, we restricted inpatient ordering of high glargine doses (≥0.5 U/kg/day) to endocrine staff in May 2013. This retrospective cohort study assesses its effect on hypoglycemia and glycemic control within 48 hours of admission (ADM).Methods: We identified 692 adult patients hospitalized at Boston Medical Center who received glargine upon ADM from November 1, 2012 through April 30, 2013 as the pre-intervention group, and 651 adult patients admitted between November 1, 2013 and April 30, 2014 as the postintervention group. Demographics, medical history, home insulin regimen, concurrent oral diabetes medications or glucocorticoid administration, ADM serum creatinine, all blood glucose levels (BG) ≤48 hours of ADM, and hemoglobin A1c values ≤3 months were assessed. Hypoglycemia was defined as BG ≤70 mg/dL, and hyperglycemia as BG ≥200 mg/dL. Multivariable regression models assessed potential associations between covariates and incidence of hypoglycemia and average BG ≤48 hours of ADM.Results: Demographics were similar between groups. Significantly less patients received high-dose glargine in the post-intervention group (5.2% vs. 0.3%, P<.001). Incidences of hypoglycemia were significantly lower in the postintervention group (20.9% vs. 17.8%, P<.001 per ADM; 3.4% vs. 2.3%, P = .001 per BG measurements [BGM]). Mean BG levels ≤48 hours of ADM and incidence of hyperglycemia were not significantly different. The adjusted incident rate ratio of hypoglycemia was 0.63 per ADM and 0.74 per BGM in the postintervention group compared to the pre-intervention group (P = .001 and P = .063, respectively).Conclusion: We found that implementation of a restriction on high doses of glargine resulted in lower rates of hypoglycemia without worsening glycemic control.Abbreviations:ADM = admissionBG = blood glucoseBGM = blood glucose measurementsBMC = Boston Medical CenterBMI = body mass indexEMR = electronic medical recordHgbA1c = hemoglobin A1cIRR = incidence rate ratioNPH = neutral protamine HagedornTDD = total daily doseT2D = type 2 diabetes  相似文献   

12.
Background: Improving diabetes management in hospitalized patients will require educational efforts for all practitioners, particularly resident physicians. Thus, a better understanding of residents' beliefs about diabetes in the hospital must be obtained.Objective: The purpose of this article was to compare and contrast perceptions of resident physicians from 2 geographically distinct training programs regarding management of inpatients with diabetes.Methods: Residents from training programs in the southwestern and southeastern United States were surveyed in 2006 and 2007 about their views on the importance of inpatient glucose control, their perceptions about desirable target glucose ranges, and the problems they encountered when trying to manage hyperglycemia in hospitalized patients.Results: Responses were obtained from 52 of 66 residents at site 1 and from 65 of 85 residents at site 2 (N = 117 total respondents; total response, 77%; mean age, 31 years; 48% men; 61% primary care). Combined analyses revealed that respondents believed that glucose control was “very important” in critically ill patients (96%), perioperative patients (82%), and noncritically ill patients (66%). Most residents indicated that they would target a therapeutic glucose range within published recommendations. Less than half felt “very comfortable” managing inpatient hyperglycemia, hypoglycemia, subcutaneous insulin, or insulin drips. Respondents were not very familiar with existing institutional policies or preprinted order sets for insulin therapy. The most commonly reported barrier to management of inpatient hyper-glycemia was lack of knowledge about appropriate insulin regimens and their use.Conclusions: Trainees from 2 very different educational programs shared common beliefs, knowledge deficits, and perceived barriers about inpatient glucose management. Our findings indicate that trainees were uncertain about how to use insulin therapy in the hospital. Future inpatient diabetes quality-improvement efforts should focus on development of uniform educational programs targeting the management of inpatient diabetes, particularly as it relates to insulin use.  相似文献   

13.
《Endocrine practice》2018,24(10):900-906
Objective: Hyperglycemia is a common problem in hospitalized patients receiving artificial nutrition, and this development of hyperglycemia during parenteral nutrition therapy (PNT) and enteral nutrition therapy (ENT) increases the risks of hospital-related complications and mortality. This review aims to discuss the pathogenesis of hyperglycemia from artificial nutrition in the hospital, summarize current evidence on the treatment of hyperglycemia with insulin in these patients, and review current guidelines.Methods: A systematic literature review using PubMed and the Medical Subject Headings (MeSH) terms “hyperglycemia,” “enteral nutrition,” and “parenteral nutrition” were used to evaluate the current evidence available for treating noncritically ill patients with hyperglycemia who were receiving artificial nutrition.Results: The literature review showed that few randomized control trials exist regarding treatment of hyperglycemia in this cohort of patients, and the multiple retrospective evaluations that have addressed this topic provided varied results. In general, intravenous (IV) continuous insulin infusion offers the best glycemic control; however, this route of insulin administration is often burdensome for floor patients and their care teams. Administration of scheduled subcutaneous (SQ) insulin in patients on ENT or PNT is a safe and effective way to manage hyperglycemia, however limited data exist on an appropriate insulin regimen.Conclusion: Further prospective, randomized control trials are necessary to determine the optimal treatment of hyperglycemia for patients receiving ENT or PNT.Abbreviations: BG = blood glucose; CG = conventional glycemic control; ENT = enteral nutrition therapy; GIP = glucose-dependent insulinotropic polypeptide; GLP-1 = glucagon-like peptide 1; IG = intensive glycemic control; IV = intravenous; NPH = neutral protamine Hagedorn; PNT = parenteral nutrition therapy; SQ = subcutaneous; T2DM = type 2 diabetes mellitus; TDD = total daily dose; TPN = total parenteral nutrition  相似文献   

14.
《Endocrine practice》2015,21(7):794-806
Objective: Recent guidelines recommend a physiologic approach to non–intensive care unit (ICU) inpatient glucose management utilizing basal-bolus with correctional (BBC) insulin over traditional sliding-scale insulin monotherapy. Unfortunately, few studies exist using a BBC approach restricted to human insulins (regular and neutral protamine Hagedorn [NPH]). This study evaluated changes in provider prescribing patterns, effects on blood glucose, and safety with implementation of hospital order sets for BBC using human insulins.Methods: Order sets were developed for non-ICU inpatients, consisting of basal, prandial, and correctional insulin using NPH and regular human insulins. Evaluation compared a 4-month period before (admissions, n = 274) with a 4-month period after order set availability (n = 302). Primary outcome was change in insulin prescribing patterns. Secondary outcomes included use of nonpreferred diabetes treatments, hemoglobin A1c testing, mean daily blood glucose, and incidence of hypoglycemia.Results: Use of BBC insulin regimen increased from 10.6 to 27.5% after order set implementation (P<.001). Use of oral antihyperglycemic agents decreased from 24.1 to 14.9% after implementation (P = .006). Hemoglobin A1c testing rose from 50.0 to 62.3% after (P = .003). Mean daily blood glucose improved, with an estimated mean difference of 14.4 mg/dL (95% confidence interval, 2.2 to 26.5 mg/dL) over hospital days 3 through 9 (P = .02). There was no significant change in the incidence of moderate or severe hypoglycemia.Conclusion: Implementation of hospital-wide human insulin order sets led to improvements in prescribing practices and blood glucose control, without increasing the incidence of hypoglycemia. These order sets may be useful for facilities limited by formulary and cost considerations to the use of older human insulins.Abbreviations: BBC = basal-bolus with correctional insulin ICU = intensive care unit NPH = neutral protamine Hagedorn NPO = nil per os  相似文献   

15.
《Endocrine practice》2010,16(2):219-230
ObjectiveTo determine the status of diabetes and hyperglycemia quality improvement efforts in hospitals in the United States.MethodsWe designed and administered a survey to a convenience sample of hospitals, and the responses were analyzed statistically.ResultsWe received 269 responses from 1,151 requested surveys. The sample was similar to hospitals in the United States on the basis of hospital type and geographic region (P = no significant difference) but not on the basis of number of beds (P < .001). Among responding hospitals, 39%, 21%, and 15% had fully implemented inpatient diabetes and hyperglycemia quality improvement programs for critically ill, non-critically ill, and perioperative patients, respectively. Moreover, 77%, 44%, and 49% had fully implemented protocols for hypoglycemia, hyperglycemic crises, and diabetic ketoacidosis, respectively. Variations in glucose target ranges were noted. The responding hospitals had no standard biochemical definition of hypoglycemia; 47% defined hypoglycemia as a glucose level ≤ 70 mg/dL, but 29%, 8%, 6%, and 4% used < 60, ≤ce:hsp sp="0.10"/>50, < 40, and < 80 mg/dL, respectively. Almost a third of reporting hospitals had no metric to track the quality of inpatient diabetes and hyperglycemia care. More than half (59%) indicated that they did not have an automated capability to extract and analyze glucose data. The most frequent barrier to implementing a glycemic control program was concern regarding hypoglycemia (61%).ConclusionHospitals are addressing the issue of inpatient diabetes and glycemic control but face obstacles to implementation of quality improvement programs and vary in their approach to management. Improving the consistency of glucose control practices within hospitals in the United States should help enhance patient care and safety. Future efforts to help hospitals overcome barriers to introducing glucose control programs could include developing standardized glycemic control metrics, improving data collection and reporting methods, and providing improved tools that enable clinicians to control glucose safely. (Endocr Pract. 2010;16:219-230)  相似文献   

16.
《Endocrine practice》2007,13(2):117-125
Objective:To develop insight into resident physician attitudes about inpatient hyperglycemia and determine perceived barriers to optimal management.Methods:As part of a planned educational program, a questionnaire was designed and administered to determine the opinions of residents about the importance o inpatient glucose control, their perceptions about what glucose ranges were desirable, and the problems they encountered when trying to manage hyperglycemia in hospitalized patients.ResultsOf 70 resident physicians from various services, 52 completed the survey (mean age, 31 years; 48% men; 37% in first year of residency training). Most respondents indicated that glucose control was “very important” in critically ill and perioperative patients but only “somewhat important” in non-critically ill patients. Most residents indicated that they would target a therapeutic glucose range within the recommended levels in published guidelines. Most residents also said they felt “somewhat comfortable” managing hyperglycemia and hypoglycemia and using subcutaneous insulin therapy. whereas most residents (48%) were “not at all comfortable” with use of intravenous administration of insulin. In general, respondents were not very familiar with existing institutional policies and preprinted order sets relating to glucose management. The most commonly reported barrier to management of inpatient hyperglycemia was lack of knowledge about appropriate insulin regimens and how to use them. Anxiety about hypoglycemia was only the third most frequent concern.ConclusionMost residents acknowledged the importance of good glucose control in hospitalized patients and chose target glucose ranges consistent with existing guidelines. Lack of knowledge about insulin treatment options was the most commonly cited barrier to ideal management. Educational programs should emphasize inpatient treatment strategies for glycemic control. (Endocr Pract. 2007;13:117-125)  相似文献   

17.
《Endocrine practice》2015,21(5):501-507
Objective: To describe the temporal distribution of hypoglycemia and its rate of recurrence during hospitalization to aid in the development of strategies to prevent hypoglycemia in hospitalized patients.Methods: Retrospective review of hypoglycemia (blood glucose <50 mg/dL) audit data in adult hospitalized patients at 2 academic hospitals. Demographics, timing, and blood glucose values were recorded. Antihyperglycemic medications, number of recurrent events, and change in basal insulin dose following the hypoglycemic event were also extracted.Results: A total of 274 index occurrences of hypoglycemia were analyzed. The mean age of the patients was 53.8 years, with roughly equal gender distributions. Twenty-eight percent of the events occurred in the absence of antihyperglycemic therapy. The incidence of hypoglycemia peaked between midnight and 6 AM. There were 36 instances of recurrent hypoglycemia associated with antihyperglycemic therapy, with 78% (n = 28) cases involving basal insulin. Patients on basal insulin who developed hypoglycemia did not have their dose changed prior to the time of the next administration in 75% of the cases.Conclusion: Hypoglycemia in hospitalized patients may occur with greater frequency overnight. Although cumbersome, routine nocturnal glycemic testing should be considered. Education regarding insulin management in the hospital and improved communication between night and day staff may aid in decreasing subsequent hypoglycemic events.Abbreviations: BG = blood glucose EHR = electronic health record ICU = intensive care unit IV = intravenous  相似文献   

18.
《Endocrine practice》2020,26(2):179-191
Objective: Better glycemic control for hospitalized diabetic patients significantly reduces health expenditures and improves disease outcomes. We developed a dynamic dashboard with a remote management system and evaluated its impact on inpatient glycemic control.Methods: This was an observational institution-wide study; study participants were enrolled from a 1,500-bed public medical center from 2016 to 2018. We evaluated the impact of a dynamic dashboard system, which analyzed and monitored all glucose data with virtual glycemic management recommendation by a team of endocrinologists, over 3 × 1-year periods: 2016 (pre-implementation), 2017 (development), and 2018 (implementation).Results: A total of 51,641 discharges with 878,159 blood glucose measurements were obtained during the 3-year period. After implementation of the dashboard system, the proportion of patients with poor glycemic control (hyperglycemia or hypoglycemia) was reduced by 31% (from 10.2 to 7.0 per day per 100 patients with glucose monitoring; P<.001); hyperglycemia decreased by 25% (from 6.1 to 4.6 per day per 100 patients with glucose monitoring; P<.001), and hypoglycemia decreased by 45% (from 4.2 to 2.3 per day per 100 patients with glucose monitoring; P<.001). Furthermore, the trend in the proportion of patients within the treat-to-target range showed significant improvement (P<.001) during the development period, with effectiveness maintained throughout the implementation period.Conclusion: We successfully installed a dynamic, electronic medical records-based dashboard monitoring system to improve inpatient glycemic control. The system, supported by a team of endocrinologists via remote recommendations, could efficiently fill an important need for improved glycemic management among hospitalized adults.Abbreviations: CDE = certified diabetes educator; DM = diabetes mellitus; EMR = electronic medical record; POC = point-of-care; TCVGH = Taichung Veterans General Hospital; UCSF = University of California, San Francisco; U.S. = United States; vGMS = virtual glucose management service  相似文献   

19.
《Endocrine practice》2015,21(4):307-322
Objective: Knowledge and confidence deficits in the management of hospital glucose abnormalities are prevalent among resident physicians. However, it is unclear whether such gaps prevail among faculty within different professional fields. In this study, we examined faculty knowledge and explored perceptions of challenges related to the management of inpatient hyperglycemia and diabetes.Methods: We conducted a survey that examined management decisions about inpatient hyperglycemia and diabetes among Medicine, Medicine/Pediatrics, Family and Community Medicine, Surgery, and Neurology faculty clinicians. All participating faculty had teaching and patient care responsibilities.Results: Responses from 69 faculty participants revealed gaps in several areas, including biomedical and contextual knowledge, familiarity with resources, clinical decision making, and self-efficacy. We identified important factors perceived as barriers to optimal glycemic management in the inpatient settings.Conclusion: The results of this study enhance our insight about the limitations existing among faculty related to the management of hyperglycemia and diabetes in hospitalized patients. We suggest that these barriers may impede optimization of patient care. Faculty play a crucial role in the clinical decision-making process and quality of care delivered by trainees. Therefore, attending physicians are likely to impact trainees' clinical performance and competency in the management of inpatient diabetes during training and beyond. Education in this subject should be a priority among trainees and faculty alike.Abbreviation: ICU = intensive care unit  相似文献   

20.
《Insulin》2008,3(2):67-77
Purpose: Recent studies have shown that the outcomes of hospitalized patients are greatly enhanced when steps are taken to improve control of their blood glucose levels. The Georgia Hospital Association Research and Education Foundation's Partnership for Health Accountability established a Diabetes Special Interest Group (D-SIG) in February 2003. Goals of the D-SIG were to enlighten health care professionals in Georgia hospitals about the benefits of controlling hyperglycemia in hospitalized patients and to develop processes to assist hospitals in the adoption of an IV insulin dosing algorithm, development of an IV insulin standing order set, and implementation of a hyperglycemia management plan.Methods: The D-SIG created an assessment tool titled “Key Elements of IV Insulin Guidelines” and evaluated numerous published IV insulin administration algorithms and protocols. After an extensive literature review, including international protocols and guidelines, user-friendly guidelines for subcutaneous and IV insulin were developed by a multidisciplinary work group, with members representing hospitals and other stakeholders from throughout the state. The group chose a well-researched method that was available in both computerized and hand-calculated formats and developed a Columnar Insulin Dosing Chart to assist with IV insulin infusions. This insulin-infusion table stems from mathematical formulas published by multiple investigators since the 1980s. The D-SIG guidelines and dosing chart were evaluated for ease of use, effectiveness, and safety in 3 settings: a small, rural critical-access hospital (CAH); an intensive care unit (ICU) in the trauma center of a large Georgia teaching hospital; and a surgical ICU in a midsize metropolitan hospital.Results: After implementation of the guidelines, the incidence of hypoglycemia (blood glucose level <60 mg/dL) was 0.9% in the trauma center ICU and 0.6% in the surgical ICU. All hypoglycemic patients in these 2 settings were asymptomatic, remained hypoglycemic only for a short time, and experienced no complications attributable to hypoglycemia. Using a moderate insulin sensitivity level for dosing initiations resulted in a time to target blood glucose level (80–110 mg/dL) of 6.4 hours, whereas using the most conservative approach required 12.8 hours to attain target range. At the CAH, time to reach the target blood glucose level (90–140 mg/dL) was 5.8 hours, and no episodes of hypoglycemia were reported. Although not part of the pilot initiative, the surgical ICU also reported a 5-fold reduction in surgical infection rates. The success of the dosing chart and standing order set paralleled that of the computerized formula when similar initiation doses were used.Conclusions: The Columnar Insulin Dosing Chart and sample clinical guidelines were piloted at 3 different settings and found to be safe and effective. Furthermore, by including the treatment for hypoglycemia in the guidelines, nurses in all patient care areas were able to manage blood glucose levels below the target range in a safe and timely manner. Use of the dosing chart and guidelines reduced blood glucose levels to the target range with no clinically significant hypoglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号